
StrongBox: Confidentiality, Integrity, and
Performance using Stream Ciphers for Full Drive

Encryption
Bernard Dickens III
University of Chicago
bd3@cs.uchicago.edu

Haryadi S. Gunawi
University of Chicago

haryadi@cs.uchicago.edu

Ariel J. Feldman
University of Chicago

arielfeldman@cs.uchicago.edu

Henry Hoffmann
University of Chicago

hankhoffmann@cs.uchicago.edu

Abstract
Full-drive encryption (FDE) is especially important for mo-
bile devices because they contain large quantities of sensitive
data yet are easily lost or stolen. Unfortunately, the standard
approach to FDE—the AES block cipher in XTS mode—is
3–5x slower than unencrypted storage. Authenticated en-
cryption based on stream ciphers is already used as a faster
alternative to AES in other contexts, such as HTTPS, but the
conventional wisdom is that stream ciphers are unsuitable
for FDE. Used naively in drive encryption, stream ciphers
are vulnerable to attacks, and mitigating these attacks with
on-drive metadata is generally believed to ruin performance.

In this paper, we argue that recent developments in mobile
hardware invalidate this assumption, making it possible to
use fast stream ciphers for FDE. Modern mobile devices
employ solid-state storage with Flash Translation Layers
(FTL), which operate similarly to Log-structured File Systems
(LFS). They also include trusted hardware such as Trusted
Execution Environments (TEEs) and secure storage areas.
Leveraging these two trends, we propose StrongBox, a stream
cipher-based FDE layer that is a drop-in replacement for
dm-crypt, the standard Linux FDE module based on AES-
XTS. StrongBox introduces a system design and on-drive
data structures that exploit LFS’s lack of overwrites to avoid
costly rekeying and a counter stored in trusted hardware to
protect against attacks.We implement StrongBox on an ARM
big.LITTLE mobile processor and test its performance under
multiple popular production LFSes. We find that StrongBox

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4911-6/18/03. . . $15.00
https://doi.org/10.1145/3173162.3173183

improves read performance by as much as 2.36× (1.72× on
average) while offering stronger integrity guarantees.

CCS Concepts • Information systems→ Data encryp-
tion; Flash memory; • Security and privacy→ Block and
stream ciphers;Hash functions andmessage authenti-
cation codes; Key management; Tamper-proof and tamper-
resistant designs; • Software and its engineering → File
systems management;

Keywords AES-XTS; full disk encryption; replay protected
memory block; log-structured; high read performance; dm-
crypt
ACM Reference Format:
Bernard Dickens III, Haryadi S. Gunawi, Ariel J. Feldman, andHenry
Hoffmann. 2018. StrongBox: Confidentiality, Integrity, and Perfor-
mance using Stream Ciphers for Full Drive Encryption. In ASPLOS
’18: 2018 Architectural Support for Programming Languages and Oper-
ating Systems, March 24–28, 2018,Williamsburg, VA, USA.ACM,New
York, NY, USA, 14 pages. https://doi.org/10.1145/3173162.3173183

1 Introduction
Full-drive encryption (FDE)1 is an essential technique for
protecting the privacy of data at rest. For mobile devices,
maintaining data privacy is especially important as these
devices contain sensitive personal and financial data yet are
easily lost or stolen. The current standard for securing data
at rest is to use the AES cipher in XTS mode [4, 5]. Unfortu-
nately, employing AES-XTS increases read/write latency by
3–5× compared to unencrypted storage.

It is well known that authenticated encryption using stream
ciphers—such as ChaCha20 [12]—is faster than using AES
(see Fig. 1). Indeed, Google made the case for stream ciphers
over AES, switching HTTPS connections on Chrome for
Android to use a stream cipher for better performance [9].
Stream ciphers are not used for FDE, however, for two rea-
sons: (1) confidentiality and (2) performance. First, when
applied naively to stored data, stream ciphers are trivially
1The common term is full-disk encryption, but this work targets SSDs, so
we use drive.

https://doi.org/10.1145/3173162.3173183
https://doi.org/10.1145/3173162.3173183

ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA Dickens et al.

vulnerable to attacks—including many-time pad and rollback
attacks—that reveal the plaintext by overwriting a secure
storage location with the same key. Second, it has been as-
sumed that adding the meta-data required to resist these
attacks would ruin the stream cipher’s performance advan-
tage. Thus, the conventional wisdom is that FDE necessarily
incurs the overhead of AES-XTS or a similar primitive.
We argue that two technological shifts in mobile device

hardware overturn this conventional wisdom, enabling confi-
dential, high-performance storage with stream ciphers. First,
these devices commonly employ solid-state storage with
Flash Translation Layers (FTL), which operate similarly to
Log-structured File Systems (LFS) [21, 22, 27]. Second, mo-
bile devices now support trusted hardware, such as Trusted
Execution Environments (TEE) [24, 29] and secure storage
areas [10]. FTLs and LFSes are used to limit sector/cell over-
writes, hence extending the life of the drive. Most writes
simply appended to a log, reducing the occurrence of over-
writes and the chance for attacks. The presence of secure
hardware means that drive encryption modules have access
to persistent, monotonically increasing counters that can be
used to prevent rollback attacks when overwrites do occur.

Given these trends, we propose StrongBox, a new method
for securing data at rest. StrongBox is a drop-in replacement
for AES-XTS-backed FDE such as dm-crypt [8]; i.e., it re-
quires no interface changes. The primary challenge is that
even with a FTL or LFS running above an SSD, filesystem
blocks will occasionally be overwritten; e.g., by segment
cleaning or garbage collection. StrongBox overcomes this
challenge by using a fast stream cipher for confidentiality
and performance with integrity preserving Message Authen-
tication Codes [6] or “MAC tags” and a secure, persistent
hardware counter to ensure integrity and prevent attacks.
StrongBox’s main contribution is a system design enabling the
first confidential, high- performance drive encryption based on
a stream cipher.
We demonstrate StrongBox’s effectiveness on a mobile

ARMbig.LITTLE system—a Samsung ExynosOcta 5—running
Ubuntu Trusty 14.04 LTS, kernel 3.10.58.We use ChaCha20 [12]
as our stream cipher, Poly1305 [11] as our MAC algorithm,
and the eMMC Replay Protected Memory Block partition
to store a secure counter [10]. As StrongBox requires no
change to any existing interfaces, we benchmark it on two
of the most popular LFSes: NILFS [21] and F2FS [22]. We
compare the performance of these LFSes on top of AES-XTS
(via dm-crypt) and StrongBox. Additionally, we compare the
performance of AES-XTS encrypted Ext4 filesystems with
StrongBox and F2FS. Our results show:

• Improved read performance: StrongBox provides de-
creased read latencies across all tested filesystems in
the majority of benchmarks when compared to dm-
crypt; e.g., under F2FS, StrongBox provides as much
as a 2.36× (1.72× average) speedup over AES-XTS.

Ti
m
e
(s)

EncryptDecrypt
0

25

50
AES − XTS ChaCha + Poly1305

Figure 1. AES-XTS and ChaCha20+Poly1305 Comparison.

• Equivalent write performance: despite having to main-
tain more metadata than FDE schemes based on AES-
XTS, StrongBox achieves near parity or provides an im-
provement in observed write latencies in the majority
of benchmarks; e.g., under F2FS, StrongBox provides
an average 1.27× speedup over AES-XTS.

StrongBox achieves these performance gains while provid-
ing a stronger integrity guarantee than AES-XTS. Whereas
XTS mode only hopes to randomize plaintext when the ci-
phertext is altered [4], StrongBox provides the security of
standard authenticated encryption. In addition, StrongBox’s
implementation is available open-source.2

2 Motivation
We detail the main motivations for StrongBox: stream ci-
phers’ speed compared to AES-XTS and Log-structured File
Systems’ append-mostly nature. We then describe the chal-
lenges of replacing AES with a stream cipher.

2.1 Performance Potential
We demonstrate the potential performance win from switch-
ing to a stream cipher by comparing AES-XTS to ChaCha20+
Poly1305. We use an Exynos Octa processor with an ARM
big.LITTLE architecture—the same processor used in the
Samsung Galaxy line of phones. We encrypt and then de-
crypt 250MB of randomly generated bits 3 times and take the
median time for each of encryption and decryption. Fig. 1
shows the distinct advantage of the stream cipher over AES—
a consistent 2.7× reduction in run time.

2.2 Append-mostly Filesystems
Of course, stream ciphers are not designed to encrypt data at
rest. If we naively implement block device encryption with a
stream cipher, overwriting the same memory location with
the same key would trivially allow an attacker to recover the
secret key. Thus we believe stream ciphers are best suited
for encrypting block devices backing Log-structured File
Systems (LFSes), as these filesystems are designed to append
data to the end of a log rather than overwrite data. In practice,
some overwrites occur; e.g., in metadata, but they are small
in number during normal execution.

2https://git.xunn.io/research/buselfs-public

StrongBox: Confidentiality, Integrity, and Performance ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA

To demonstrate this fact, we write 800MB of random data
directly to the backing store using four different file systems:
Ext4, LogFS, NILFS, and F2FS. We count the number of total
writes to the underlying block device and the number of
times data is overwritten for each file system.

Table 1. File System Overwrite Behavior

File System Total Write Ops Overwrites

ext4 16,756 10,787
LogFS 4,244 32
NILFS 4,199 24
F2FS 2.107 2

Table 1 shows the data for this experiment. Ext4 has the
highest number of writes, but many of those are small writes
for book-keeping purposes. Ext4 also has the largest number
of overwrites. Almost 65% of the writes are to a previously
written location in the backing store. In contrast, all three
Log-structured file systems have very few overwrites.

2.3 Threat Model
A stream cipher can be more than twice as fast as AES-
XTS while providing the same confidentiality guarantee. The
problem is that a stream cipher is not secure if the same key
is used to overwrite the same storage location. Fortunately,
FTLs and LFSes rarely overwrite the same location.

We cannot, however, ignore the fact that overwrites do oc-
cur. While Table 1 shows overwrites are rare during normal
operation, we know they will occur when garbage collecting
the LFS. Thus, we will need some metadata to track writes
and ensure that data is handled securely if overwrites occur.
Therefore, we recognize three key challenges to replacing
AES with a stream cipher for FDE:
• Tracking writes to the block device to ensure that the
same location is never overwritten with the same key.
• Ensuring that the metadata that tracks writes is secure
and is not subject to leaks or rollback attacks.
• Accomplishing the above efficiently so that we main-
tain the performance advantage of the stream cipher.

The key to StrongBox is using a secure, persistent counter
supported in modern mobile hardware; e.g., for limiting pass-
word attempts. This counter can track writes, and thus ver-
sions of the encrypted data. If an attacker tried to roll back
the file system to overwrite the same location with the same
key, our StrongBox detects that the local version number is
out of sync with the global version number stored in the se-
cure counter. In that case, StrongBox refuses to initialize and
the attack fails. The use of the hardware-supported secure
counter significantly raises the bar when it comes to rollback
attacks, requiring a costly and non-discrete physical attack
on the hardware itself to be effective. The actual structure of
the metadata required to track writes and maintain integrity

Figure 2. Overview of the StrongBox construction.

is significantly more complicated than simply implementing
a counter and is the subject of the next section.

An additional challenge is that of crash recovery. Strong-
Box relies on the overlying filesystem to manage data re-
covery in the event of a crash that leaves user data in an
inconsistent state. StrongBox handles metadata recovery af-
ter a crash by giving the root user the option to accept the
current metadata state as the new consistent state, i.e., “force
mounting”. This allows the root user to mount the filesystem
and access data after an unexpected shutdown. An attacker
might try to take advantage of this feature by modifying
the backing store, forcing an inconsistent state, and hoping
the root user will ignore it and force mount the system any-
way. StrongBox defends against this attack by preventing
force mounts when metadata state is wildly inconsistent
with the global version counter. Otherwise, the root user
is warned if they attempt a force mount. Thus, attacking
StrongBox by forcing a crash can only be successful if the
attacker also has root permission, in which case security is
already compromised. Crash recovery is also detailed in the
next section.

3 StrongBox System Design
StrongBox acts as a translation layer sitting between the
drive and the operating system. It provides confidentiality
and integrity guarantees while minimizing performance loss
due to metadata management overhead. StrongBox accom-
plishes this by leveraging the speed of stream ciphers over
the AES block cipher and taking advantage of the append-
mostly nature of Log-structured Filesystems (LFS) and mod-
ern Flash Translation Layers (FTL) [14].

Hence, there are several locations where StrongBox could
be implemented in the system stack. StrongBox could be inte-
grated into an LFS kernelmodule itself—e.g., F2FS—specifically
leveraging the flexibility of the Virtual Filesystem Switch
(VFS). StrongBox could be implemented as an actual block
device, or virtual block device layered atop a physical block
device; the latter is where we chose to implement our proto-
type. StrongBox could even be implemented within the SSD

ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA Dickens et al.

Figure 3. Layout of StrongBox’s backing storage.

drive controller’s FTL, which handles scatter gather, garbage
collection, wear-leveling, etc.

Fig. 2 illustrates StrongBox’s design. StrongBox’s metadata
is encapsulated in four components: an in-memory Merkle
Tree and two drive-backed byte arrays—the Keycount Store
and the Transaction Journal—and a persistent monotonic
counter we implement with the Replay Protected Memory
Block or RPMB. All four are integrated into the Cryptographic
Driver, which handles data encryption, verification, and de-
cryption during interactions with the underlying backing
store. These interactions take place while fulfilling high-level
I/O requests received from the LFS. The Device Controller
handles low-level I/O between StrongBox and the backing
store.
The rest of this section describes the components refer-

enced in Fig. 2. Specifically: we first describe the backing
store and StrongBox’s layout for data and metadata. This is
followed by an exploration of the cryptographic driver and
how it interacts with that metadata, the role of the device
controller, an overview of rekeying in the backing store, and
further considerations to ensure confidentiality in the case
of rollbacks and related attacks.

3.1 Backing Store Function and Layout
The backing store is the storage media on which StrongBox
operates. Fig. 3 illustrates StrongBox’s layout on this store.
In the body section of the backing store layout, end-user

data is partitioned into a series of same-size logical blocks.
These are distinct from the concept of physical drive blocks,
which are collections of one or more drive sectors. To make
this distinction clear, we refer to these wider logical blocks
as nuggets, marked NUG in the Body section of Fig. 3. Hence,
a nugget consists of one or more physical drive blocks, de-
pending on its configured size. Each nugget is subdivided
into a constant number of sub-blocks we refer to as flakes.
The reason for these nugget/flake divisions are two-fold:
1. To track, detect, and handle overwrites and
2. To limit the maximum length of any plaintexts oper-

ated on by the cryptographic driver, decreasing the
overhead incurred per I/O operation and per overwrite.

Considering the first item, we are required to keep track
of writes so that we may detect when an overwrite occurs.

Flakes are key to this tracking. When a request comes in to
write to one or more flakes in a nugget, StrongBox marks
the affected flakes as “flagged”. Here, “flagged” implies that
another write to some portion of that flake would constitute
an overwrite. If a new request comes in to write to one or
more of those same flakes another time, StrongBox triggers
a “rekeying” procedure over the entire nugget to safely over-
write the old data in those flakes. This rekeying procedure
is necessarily time consuming, ballooning the overhead of
overwrites translated by StrongBox.
Considering the second item, nugget size here governs

the granularity of rekeying while flake size governs gran-
ularity when identifying overwrites. A larger nugget size
will increase the penalty incurred with rekeying (you’re
re-encrypting a larger number of bytes) while a smaller
nugget size will increase the quantity of nuggets needing to
be rekeyed when an overwrite is detected as well as increase
the amount of metadata stored on drive and in memory. On
the other hand, a larger flake size will increase the number
of times an incoming write is seen as an overwrite, with
a non-optimal nugget-sized flake requiring a rekeying on
every write. A smaller flake size will increase the amount of
metadata stored on drive and in memory.
The size and structure of that metadata is described in

greater detail throughout the rest of this section.
The head section of the backing store layout contains the

metadata written to drive during StrongBox’s initialization.
These headers govern StrongBox’s operation and are, in
order:

1. VERSION, 4 bytes; specifies the StrongBox version
originally used to initialize the backing store

2. SALT, 16 bytes; the salt used in part to derive the global
master secret

3. MTRH, 32 bytes; the hash of the Merkle Tree root
4. TPMGLOBALVER, 8 bytes; the monotonic global ver-

sion count, parity in hardware-supported secure stor-
age

5. VERIFICATION, 32 bytes; used to determine if the key
derived from a password is correct

6. NUMNUGGETS, 4 bytes; the number of nuggets con-
tained by the backing store

7. FLAKESPERNUGGET, 4 bytes; the number of flakes/nugget
8. FLAKESIZE, 4 bytes; the size of each flake, in bytes
9. INITIALIZED, 1 byte; used to determine if the backing

store has been properly initialized
10. REKEYING, 4 bytes; the index of the nugget in need

of rekeying if there is a pending rekeying procedure
After the headers, two byte arrays are stored in the Head

section: one of N 8-byte integer keycounts and one of N
⌈P/8⌉-byte transaction journal entries, whereN is the number
of nuggets and P is the number of flakes per nugget.
Finally, the Rekeying Journal is stored at the end of the

Head section. The rekeying journal is where nuggets and

StrongBox: Confidentiality, Integrity, and Performance ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA

their associated metadata are transiently written, enabling
StrongBox to resume rekeying in the event that it is inter-
rupted during the rekeying procedure.

3.2 Metadata-aware Cryptographic Driver
The cryptographic driver coordinates StrongBox’s disparate
components. Its primary function is to map incoming reads
and writes to their proper destinations in the backing store,
applying our chosen stream cipher and message authentica-
tion code to encrypt, verify, and decrypt data on the fly with
consideration for metadata management.
When a read request is received, it is first partitioned

into affected nuggets; e.g., a read that spans two nuggets is
partitioned in half. For each nugget affected, we calculate
which flakes are touched by the request. We then verify the
contents of those flakes. If all the flakes are valid, whatever
subset of data that was requested by the user is decrypted and
returned. Algorithm 1 details StrongBox’s read operation.
Like reads, when a write request is received, the request

is first partitioned with respect to affected nuggets. For each
affected nugget, we calculate which flakes are touched by
the request and then check if any of those flakes are marked
as flagged in the transaction journal. If one or more of them
have been marked flagged, we trigger rekeying for this spe-
cific nugget (see: Algorithm 3) and end there. Otherwise,
we mark these touched flakes as flagged in the transaction
journal. We then iterate over these touched flakes. For the
first and last flakes touched by the write request, we execute
an internal read request (see: Algorithm 1) to both obtain
the flake data and verify that data with the Merkle Tree. We
then overwrite every touched flake with the data from the
requested operation, update the Merkle Tree to reflect this
change, encrypt andwrite out the new flake data, and commit
all corresponding metadata. Algorithm 2 details StrongBox’s
write operation.

3.2.1 Transaction Journal
An overwrite breaks the security guarantee offered by any
stream cipher. To prevent this failure, StrongBox tracks in-
coming write requests to prevent overwrites. This tracking
is done with the transaction journal, featured in Fig. 2.
The transaction journal consists of N ⌈P/8⌉-byte bit vec-

tors where N is the number of nuggets and P is the number
of flakes per nugget. A bit vector v contains at least P bits
v = {b0,b1,b2, . . . ,bP−1, . . . }, with extra bits ignored. Each
vector is associated with a nugget and each bit with a flake
belonging to that nugget. When an incoming write request
occurs, the corresponding bit vector is updated (set to 1) to
reflect the new flagged state of those flakes.
The transaction journal is referenced during each write

request, where it is updated to reflect the state of the nugget
and checked to ensure the operation does not constitute
an overwrite. If the operation does constitute an overwrite,

Algorithm 1 StrongBox handling an incoming read request.
Require: The read request is over a contiguous segment of the backing

store
Require: ℓ, ℓ′ ← read requested length
Require: ℵ ← master secret
Require: nindex ← first nugget index to be read
1: data ← empty
2: while ℓ , 0 do
3: knindex ← GenKeynuддet (nindex , ℵ)
4: Fetch nugget keycount nkc from Keycount Store.
5: Calculate indices touched by request: ff ir st , flast
6: nf lakedat ← ReadF lakes (ff ir st , . . . , flast)
7: for fcurrent = ff ir st to flast do
8: kfcurrent ← GenKeyf lake (knindex , fcurrent , nkc)
9: taдfcurrent ← GenMac (kfcurrent , nf lakedat [fcurrent])
10: Verify taдfcurrent in Merkle Tree.

(*) denotes requested subset of nugget data
11: data ← data + Decrypt (∗nf lakedat , knindex , nkc)
12: ℓ ← ℓ − ∥ ∗ nf lakedat ∥
13: nindex ← nindex + 1
14: return data ▷ Fulfill the read request
Ensure: ∥data ∥ <= ℓ′
Ensure: ℓ = 0

Algorithm 2 StrongBox handling an incoming write re-
quest.
Require: The write request is to a contiguous segment of the backing store
Require: ℓ, ℓ′ ← write requested length
Require: ℵ ← master secret
Require: data ← cleartext data to be written
Require: nindex ← first nugget index to be affected
1: Increment secure counter: by 2 if we recovered from a crash, else 1
2: while ℓ , 0 do
3: Calculate indices touched by request: ff ir st , flast
4: if Transaction Journal entries for ff ir st , . . . , flast , 0 then
5: Trigger rekeying procedure (see: Algorithm 3).
6: continue
7: Set Transaction Journal entries for ff ir st , . . . , flast to 1
8: knindex ← GenKeynuддet (nindex , ℵ)
9: Fetch nugget keycount nkc from Keycount Store.
10: for fcurrent = ff ir st to flast do
11: nf lakedat ← empty
12: if fcurrent == ff ir st ∥fcurrent == flast then
13: nf lakedat ← CryptedRead (FSIZE, ℵ, nindex@fof f set)

14: nf lakedat ← Encrypt (nf lakedat , knindex , nkc)
15: kfcurrent ← GenKeyf lake (knindex , fcurrent , nkc)
16: taдfcurrent ← GenMac (kfcurrent , nf lakedat)
17: Update new taдfcurrent in Merkle Tree.
18: WriteF lake (fcurrent , nf lakedat)
19:

(*) denotes requested subset of nugget data if applicable
20: ℓ ← ℓ − ∥ ∗ nf lakedat ∥
21: nindex ← nindex + 1
22: Update and commit metadata and headers
Ensure: ℓ = 0

StrongBox triggers a rekeying procedure for the entire nugget
before safely completing the request.

ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA Dickens et al.

3.2.2 Merkle Tree
Tracking writes with the transaction journal may stymie a
passive attacker by preventing explicit overwrites, but a suf-
ficiently motivated active attacker could resort to all manner
of cut-and-paste tactics with nuggets, flakes, and even blocks
and sectors. If, for example, an attacker purposefully zeroed-
out the transaction journal entry pertaining to a specific
nugget in some out-of-band manner—such as when Strong-
Box is shut down and then later re-initialized with the same
backing store—StrongBox would consider any successive
incoming writes as if the nugget were in a completely clean
state, even though it actually is not. This attack would force
StrongBox to make compromising overwrites. To prevent
such attacks, we must ensure that the backing store is al-
ways in a valid state. More concretely: we must provide an
integrity guarantee on top of a confidentiality guarantee.

StrongBox uses our chosen Message Authentication Code
(MAC) generating algorithm and each flake’s unique key to
generate a per-flake MAC tag (“MACed”). The purpose of
this tag is to authenticate flake data and confirm that it has
not been tampered with. Each tag is then appended to the
Merkle Tree along with StrongBox’s metadata.
The transaction journal entries are handled specially in

that the bit vectors are MACed and the result is appended to
the Merkle Tree. This is done to save space.

The Merkle Tree then ties the integrity of any single flake
to the integrity of the system as a whole such that if the for-
mer fails, i.e., there is a MAC tag mismatch for any particular
flake, the latter immediately and obviously fails.

3.2.3 Keycount Store
To prevent a many-time pad attack, each nugget is assigned
its own form of nonce we refer to as a keycount. The keycount
store in Fig. 2 represents a byte-array containing N 8-byte
integer keycounts indexed to each nugget. Along with acting
as the per-nugget nonce consumed by the stream cipher, the
keycount is used to derive the per-flake unique subkeys used
in MAC tag generation.

3.2.4 Rekeying Procedure
When a write request would constitute an overwrite, Strong-
Box will trigger a rekeying process instead of executing the
write normally. This rekeying process allows the write to
proceed without causing a catastrophic confidentiality viola-
tion.
When rekeying begins, the nugget in question is loaded

into memory and decrypted. The target data is written into
its proper offset in this decrypted nugget. The nugget is
then encrypted, this time with a different nonce (keycount +
1), and written to the backing store, replacing the outdated
nugget data. See: Algorithm 3.

Algorithm 3 StrongBox rekeying process.
Require: The original write applied to a contiguous backing store segment
Require: ℓ ← write requested length
Require: ℵ ← master secret
Require: data ← cleartext data to be written
Require: nindex ← nugget rekeying target

▷ Read in and decrypt the entire nugget
1: nnuддetdat ← CryptedRead (NSIZE, ℵ, nindex)
2: Calculate indices touched by request: ff ir st , flast
3: Write data into nnuддetdat at proper offset with length ℓ

4: Set Transaction Journal entries for ff ir st , . . . , flast to 1
5: knindex ← GenKeynuддet (nindex , ℵ)
6: Fetch nugget keycount nkc from Keycount Store. Increment it by one.
7: nnuддetdat ← Encrypt (nnuддetdat , knindex , nkc)
8: Commit nnuддetdat to the backing store

▷ Iterate over all flakes in the nugget
9: for all flakes fcurrent in nindex do
10: kfcurrent ← GenKeyf lake (knindex , fcurrent , nkc)
11: Copy fcurrent data from nnuддetdat → nf lakedat
12: taдfcurrent ← GenMac (kfcurrent , nf lakedat)
13: Update new taдfcurrent in Merkle Tree.
14: Update and commit metadata and headers

3.3 Defending Against Rollback Attacks
To prevent StrongBox from making overwrites, the status of
each flake is tracked and overwrites trigger a rekeying pro-
cedure. Tracking flake status alone is not enough, however.
An attacker could take a snapshot of the backing store in its
current state and then easily rollback to a previously valid
state. At this point, the attacker could have StrongBox make
writes that it does not recognize as overwrites.

With AES-XTS, the threat posed by rolling the backing
store to a previously valid state is outside of its threat model.
Despite this, data confidentiality guaranteed by AES-XTS
holds in the event of a rollback, even if integrity is violated.
StrongBox uses a monotonic global version counter to

detect rollbacks. When a rollback is detected, StrongBox
will refuse to initialize unless forced, using root permission.
Whenever a write request is completed, this global version
counter is committed to the backing store, committed to
secure hardware, and updated in the in-memory Merkle
Tree.

3.4 Recovering from Inconsistent State
If StrongBox is interrupted during operation, the backing
store—consisting of user data and StrongBox metadata—will
be left in an inconsistent state. StrongBox relies on the overly-
ing filesystem e.g., F2FS to manage user-data recovery, which
is what these filesystems are designed to do and do well. We
detail how StrongBox handles its own inconsistent metadata.

Let c be the value of the on-chip monotonic global version
counter and d be the value of the on-drive global version
counter header (TPMGLOBALVER). Consider the following:
• c == d and MTRH is consistent: StrongBox is operating
normally and will mount without issue.

StrongBox: Confidentiality, Integrity, and Performance ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA

• c < d or c == d but MTRH is inconsistent: Since the
global version counter is updated before any write,
this case cannot be reached unless the backing store
was manipulated by an attacker. So, StrongBox will
refuse to initialize and cannot be force mounted.
• c > d + 1: Since the global version counter is updated
once per write, this case cannot be reached unless
the backing store was rolled back or otherwise ma-
nipulated by an attacker. In this case, the root user is
warned and StrongBox will refuse to initialize and can-
not be force mounted unless the MTRH is consistent.
We allow the root user to force mount here if the root
user initiated the rollback themselves, such as when
recovering from a drive backup.
• c == d + 1: In this case, StrongBox likely crashed
during a write, perhaps during an attempted rekeying.
If the rekeying journal is empty or the system cannot
complete the rekeying and/or bring the MTRH into a
consistent state, the root user is warned and allowed to
force mount. Otherwise, StrongBox will not initialize.

For subsequent rekeying efforts in the latter two cases,
rather than incrementing the corresponding keystore coun-
ters by 1 during rekeying, they will be incremented by 2.
This is done to prevent potential reuse of any derived nugget
keys that might have been in use right before StrongBox
crashed.

When StrongBox can detect tampering, it will not initialize.
When StrongBox cannot distinguish between tampering and
crash, it offers the root user a choice to force mount. Thus,
an attacker could force a crash and use root access to force
mount. We assume, however, that if an attacker has root
access to a device, its security is already compromised.

4 StrongBox Implementation
Our implementation of StrongBox is comprised of 5000 lines
of C code. StrongBox uses OpenSSL version 1.0.2 and Lib-
Sodium version 1.0.12 for its ChaCha20, Argon2, Blake2, and
AES-XTS implementations, likewise implemented in C. The
SHA-256 Merkle Tree implementation is borrowed from the
Secure Block Device library [18]. StrongBox’s implementa-
tion is available as open-source.3

To reduce the complexity of the experimental setup, estab-
lish a fair baseline, and allow StrongBox to run in user space,
we use a BUSE [7] virtual block device. BUSE is a thin (200
LOC) wrapper around the standard Linux Network Block
Device (NBD), which allows a machine to serve requests for
reads and writes to virtual block devices exposed via domain
socket. We built StrongBox on top of BUSE/NBD because
a simple block device in user space allows for quick exper-
imentation and rapid prototyping. It is not required for a
proper implementation.

3https://git.xunn.io/research/buselfs-public

4.1 Deriving Subkeys
The cryptographic driver requires a shared master secret.
The derivation of this master secret is implementation spe-
cific and has no impact on performance as it is completed
during StrongBox’s initialization. Our implementation uses
the Argon2 KDF to derive a master secret from a given pass-
word with an acceptable time-memory trade-off.

To assign each nugget its own unique keystream, that
nugget requires a unique key and associated nonce. We de-
rive these nugget subkeys from the master secret during
StrongBox’s initialization. To guarantee the backing store’s
integrity, each flake is tagged with a MAC. We use Poly1305,
accepting a 32-byte one-time key and a plaintext of arbitrary
length to generate tags. These one-time flake subkeys are
derived from their respective nugget subkeys.

4.2 A Secure, Persistent, Monotonic Counter
Our target platform uses an embedded Multi-Media Card
(eMMC) as a backing store. In addition to boot and user data
partitions, the eMMC standard includes a secure storage par-
tition called a Replay Protected Memory Block (RPMB) [10].
The RPMB partition’s size is configurable to be at most 16MB
(32MB on some Samsung devices) [25]. All read and write
commands issued to the RPMB must be authenticated by a
key burned into write-once storage (typically eFUSE) during
some one-time, secure initialization process.

To implement rollback protection on top of the RPMB, the
key for authenticating RPMB commands can be contained in
TEE sealed storage or derived from the TPM. For this imple-
mentation, StrongBox requires interaction with TPM/TEE
secure storage only at mount time, where the authentica-
tion key can be retrieved and cached for the duration of
StrongBox’s lifetime. With the cached key on hand, our im-
plementationmakes traditional IOCTL calls to read andwrite
global version counter data to the RPMB eMMC partition,
enforcing the invariant that it only increase monotonically.

Our design is not dependent on the eMMC standard, how-
ever. Trusted hardware mechanisms other than the eMMC
RPMB partition, including TPMs, support secure, persistent
storage and/or monotonic counters directly. These can be
adapted for use with StrongBox just as well.
There are two practical concerns we must address while

implementing the secure counter: wear and performance
overhead. Wear is a concern because the counter is imple-
mented in non-volatile storage. The RPMB implements all
the same wear protection mechanisms that are used to store
user-data [10]. Additionally, StrongBox writes to the global
version counter once per write to user-data. Given that the
eMMC implements the same wear protection for the RPMB
and user data, and that the ratio of writes to these areas is 1:1,
we expect StrongBox places no additional wear burden on the
hardware. Further, with the JEDEC spec suggesting RPMB
implementations use more durable and faster single-level

ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA Dickens et al.

NAND flash cells rather than cheaper and slower multi-level
NAND flash cells [10, 25], the RPMB partition will likely
outlive and outperform the user-data portion of the eMMC.
In terms of performance overhead, updating the global

version counter requires making one 64-bit authenticated
write per user-data write. As user-data writes are almost
always substantially larger, we see no significant overhead
from the using the RPMB to store the secure counter.

4.3 LFS Garbage Collection
An LFS attempts to write to a drive sequentially in an append-
only fashion, as if writing to a log. This requires large amounts
of contiguous space, called segments. Since any backing store
is necessarily finite, an LFS can only append so much data
before it runs out of space. When this occurs, the LFS trig-
gers a segment cleaning algorithm to erase outdated data and
compress the remainder of the log into as few segments as
possible [22, 27]. This procedure is known more broadly as
garbage collection [22].

In the context of StrongBox, garbage collection could po-
tentially incur high overhead. The procedure itself would,
with its everywrite, require a rekeying of any affected nuggets.
Worse, every proceeding write would appear to StrongBox as
if it were an overwrite, since there is no way for StrongBox
to know that the LFS triggered garbage collection internally.
In practice, modern production LFSes are optimized to

perform garbage collection as few times as possible [22]. Fur-
ther, they often perform garbage collection in a background
thread that triggers when the filesystem is idle and only
perform expensive on-demand garbage collection when the
backing store is nearing capacity [21, 22]. We leave garbage
collection turned on for all of our tests and see no substan-
tial performance degradation from this process because it is
scheduled not to interfere with user I/O.

4.4 Overhead
StrongBox stores metadata on the drive it is encrypting (see
Fig. 3). This metadata should be small compared to the user
data. Our implementation uses 4KB flakes, 256 flakes/nugget,
and 1024 nuggets per GB of user data. Given the flake and
nugget overhead, this configuration requires just over 40KB
of metadata per 1 GB of user data. There is an additional,
single static header that requires just over 200 bytes. Thus
StrongBox’s overhead in terms of storage is less than one hun-
dredth of a percent.

5 Evaluation
5.1 Experimental Setup
We implement a prototype of StrongBox on a Hardkernel
Odroid XU3 ARM big.LITTLE system (Samsung Exynos5422
A15 and A7 quad core CPUs, 2Gbyte LPDDR3 RAM at 933
MHz, eMMC5.0 HS400 backing store) running Ubuntu Trusty
14.04 LTS, kernel version 3.10.58. The maximum theoretical

memory bandwidth for this model is 14.9GB/s. Observed
maximum memory bandwidth is 4.5GB/s.

5.2 Experimental Methodology
In this section we seek to answer three questions:

1. What is StrongBox’s overhead when compared to dm-
crypt AES-XTS?

2. How does StrongBox under an LFS (i.e., F2FS) config-
uration compare to the popular dm-crypt under Ext4
configuration?

3. Where does StrongBox derive its performance gains?
Implementation? Choice of cipher?

To evaluate StrongBox’s performance, we measure the
latency (seconds/milliseconds per operation) of both sequen-
tial and random read and write I/O operations across four
different standard Linux filesystems: NILFS2, F2FS, Ext4 in
ordered journaling mode, and Ext4 in full journaling mode.
The I/O operations are performed using file sizes between
4KB and 40MB. These files were populated with random data.
The experiments are performed using a 1GB standard Linux
ramdisk (tmpfs) as the ultimate backing store.
For sequential F2FS specifically, we include latency mea-

surements dealing with a file size 2.5× the size of available
DRAM, i.e., 5GB, supported by a distinct tmpfs backing store
swapped into memory.

Ext4’s default is ordered journalingmode (data=ordered),
where metadata is committed to the filesystem’s journal
while the actual data is written through to the main filesys-
tem. Given a crash, the filesystem uses the journal to avoid
damage and recover to a consistent state. Full journaling
mode (data=journal) journals bothmetadata and the filesys-
tem’s actual data—essentially a double write-back for each
write operation. Given a crash, the journal can replay entire
I/O events so that both the filesystem and its data can be
recovered. We include both modes of Ext4 to further explore
the impact of frequent overwrites against StrongBox.
The experiment consists of reading and writing each file

in its entirety 30 times sequentially, and then reading and
writing random portions of each file 30 times. In both cases,
the same amount of data is read and written per file. The
median latency is taken per result set.We chose 30 read/write
operations (10 read/write operations repeated three times
each) to handle potential variation. The Linux page cache
is dropped before every read operation, each file is opened
in synchronous I/O mode via O_SYNC, and we rely on non-
buffered read()/write() system calls. A high-level I/O size
of 128KB was used for all read and write calls that hit the
filesystems; however, the I/O requests being made at the
block device layer varied between 4KB and 128KB depending
on the filesystem under test.
The experiment is repeated on each filesystem in three

different configurations:

StrongBox: Confidentiality, Integrity, and Performance ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA

1. unencrypted: Filesystem mounted atop a BUSE virtual
block device set up to immediately pass through any
incoming I/O requests straight to the backing store.
We use this as the baseline measurement of the filesys-
tem’s performance without any encryption.

2. StrongBox: Filesystem mounted atop a BUSE virtual
block device provided by our StrongBox implementa-
tion to perform full-drive encryption.

3. dm-crypt: Filesystem mounted atop a Device Map-
per [2] higher-level virtual block device provided by
dm-crypt to perform full-drive encryption, which it-
self is mounted atop a BUSE virtual block device with
pass through behavior identical to the device used in
the baseline configuration. dm-crypt was configured
to use AES-XTS as its full-drive encryption algorithm.
All other parameters were left at their default values.

Fig. 4 compares StrongBox to dm-crypt under the F2FS
filesystem. The gamut of result sets over different filesystems
can be seen in Fig. 5. Fig. 6 compares Ext4 with dm-crypt to
F2FS with StrongBox.

5.3 StrongBox Read Performance
Fig. 4 shows the performance of StrongBox in compari-
son to dm-crypt, both mounted with the F2FS filesystem.
We see StrongBox improves on the performance of dm-
crypt’s AES-XTS implementation across sequential and ran-
dom read operations on all file sizes. Specifically, 2.36×
(53.05m/22.48m) for sequential 5GB, 2.07× (2.09s/1.00s) for
sequential 40MB, 2.08× (267.34ms/128.22ms) for sequential
5MB, 1.85× (28.30ms/15.33ms) for sequential 512KB, and
1.03× (0.95ms/0.86ms) for sequential 4KB.

Fig. 5 provides an expanded performance profile for Strong-
Box, testing a gamut of filesystems broken down by work-
load file size. For sequential reads across all filesystems and
file sizes, StrongBox outperforms dm-crypt. This is true
even on the non-LFS Ext4 filesystems. Specifically, we see
read performance improvements over dm-crypt AES-XTS
for 40MB sequential reads of 2.02× (2.15s/1.06s) for NILFS,
2.07× (2.09s/1.00s) for F2FS, 2.09× (2.11s/1.01s) for Ext4 in
ordered journaling mode, and 2.06× (2.11s/1.02s) for Ext4
in full journaling mode. For smaller file sizes, the perfor-
mance improvement is less pronounced. For 4KB reads we
see 1.28× (1.62ms/1.26ms) for NILFS, 1.03× (0.88ms/0.86ms)
for F2FS, 1.04× (0.95ms/0.92ms) for Ext4 in ordered journal-
ing mode, and 1.07× (0.97ms/0.91ms) for Ext4 in full jour-
naling mode. When it comes to random reads, we see vir-
tually identical results save for 4KB reads, where dm-crypt
proved slightly more performant under the NILFS LFS at
1.12× (1.73ms/1.54ms). This behavior is not observed with
the more modern F2FS.

StrongBox vs dm-crypt AES-XTS: F2FS Test

La
te
nc
y
(n
or
m
al
iz
ed

to
un

en
cr
yp

te
d)

4K 512K 5M 40M 5G Mean
1

2

3

4

1

4.2 5.5 7.1

File Size (bytes)

StrongBox/reads dm-crypt/reads
StrongBox/writes dm-crypt/writes

Figure 4.a: Sequential I/O expanded F2FS result set.

La
te
nc
y
(n
or
m
al
iz
ed

to
un

en
cr
yp

te
d)

4K 512K 5M 40M Mean
1

2

3

4

1

4.7

File Size (bytes)

Figure 4.b: Random I/O expanded F2FS result set.

Figure 4. Test of the F2FS LFS mounted atop both dm-crypt
and StrongBox; median latency of different sized whole file
read and write operations normalized to unencrypted access.
By harmonic mean, StrongBox is 1.72× faster than dm-crypt
for sequential reads and 1.27× faster for sequential writes.

5.4 StrongBox Write Performance
Fig. 4 shows the performance of StrongBox in comparison
to dm-crypt under the modern F2FS LFS broken down by
workload file size. Similar to read performance under the
F2FS, we see StrongBox improves on the performance of
dm-crypt’s AES-XTS implementation across sequential and
random write operations on all file sizes. Hence, StrongBox
under F2FS is holistically faster than dm-crypt under F2FS.
Specifically, 1.55× (1.80h/1.16h) for sequential 5GB, 1.33×
(3.19s/2.39s) for sequential 40MB, 1.21× (412.51ms/341.56ms)

ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA Dickens et al.

StrongBox Four Filesystems Test

La
te
nc
y
(n
or
m
al
iz
ed

to
dm

-c
ry
pt
)

4K 512K 5M 40M
0

0.5

1.5

2

1

File Size (bytes)

NILFS/reads F2FS/reads
Ext4OJ/reads Ext4FJ/reads

Figure 5.a: Sequential reads.

4K 512K 5M 40M
0

0.5

1.5

2

1

2.48.1 5.3 2.4 3.614.5 2.9 2.5 3.6

File Size (bytes)

NILFS/writes F2FS/writes
Ext4OJ/writes Ext4FJ/writes

Figure 5.b: Sequential writes.

La
te
nc
y
(n
or
m
al
iz
ed

to
dm

-c
ry
pt
)

4K 512K 5M 40M
0

0.5

1.5

2

1

File Size (bytes)

Figure 5.c: Random reads.

4K 512K 5M 40M
0

0.5

1.5

2

1

2.910.3 4.5 2.7 3.68.0 3.0 2.5 3.6

File Size (bytes)

Figure 5.d: Random writes.

Figure 5. Comparison of four filesystems running on top
of StrongBox performance is normalized to the same file
system running on dm-crypt. Points below the line signify
StrongBox outperforming dm-crypt. Points above the line
signify dm-crypt outperforming StrongBox.

for sequential 5MB, 1.15× (65.23ms/56.63ms) for sequential
512KB, and 1.19× (30.30ms/25.46ms) for sequential 4KB.

Fig. 5 provides an expanded performance profile for Strong-
Box, testing a gamut of filesystems broken down byworkload
file size. Unlike read performance, write performance un-
der certain filesystems is more of a mixed bag. For 40MB
sequential writes, StrongBox outperforms dm-crypt’s AES-
XTS implementation by 1.33× (3.19s/2.39s) for F2FS and
1.18× (4.39s/3.74s) for NILFS. When it comes to Ext4, Strong-
Box’s write performance drops precipitously with a 3.6×
slowdown for both ordered journaling and full journaling

modes (respectively: 12.64s/3.51s, 24.89s/6.88s). For non-LFS
4KB writes, the performance degradation is even more pro-
nounced with a 8.09× (118.48ms/14.65ms) slowdown for or-
dered journaling and 14.5× (143.15ms/9.87ms) slowdown for
full journaling.
This slowdown occurs in Ext4 because, while writes in

StrongBox from non-LFS filesystems have a metadata over-
head that is comparable to that of forward writes in an LFS
filesystem, Ext4 is not an append-only or append-mostly
filesystem. This means that, at any time, Ext4 will initiate
one or more overwrites anywhere on the drive (see Table 1).
As described in Section 3, overwrites once detected trigger
the rekeying process, which is a relatively expensive oper-
ation. Multiple overwrites compound this expense further.
This makes Ext4 and other filesystems that do not exhibit at
least append-mostly behavior unsuitable for use with Strong-
Box. We include it in our result set regardless to illustrate
the drastic performance impact of frequent overwrites on
StrongBox.
For both sequential and random 4KB writes among the

LFSes, the performance improvement over dm-crypt’s AES-
XTS implementation for LFSes deflates. For the more modern
F2FS atop StrongBox, there is a 1.19× (30.30ms/25.46ms)
improvement. For the older NILFS filesystem atop StrongBox,
there is a 2.38× (27.19ms/11.44ms) slowdown. This is where
we begin to see the overhead associated with tracking writes
and detecting overwrites potentially becoming problematic,
though the overhead is negligible depending on choice of
LFS and workload characteristics.
These results show that StrongBox is sensitive to the be-

havior of the LFS that is mounted atop it, and that any prac-
tical use of StrongBox would require an extra profiling step
to determine which LFS works best with a specific workload.
With the correct selection of LFS, such as F2FS for workloads
dominated by small write operations, potential slowdowns
when compared to mounting that same filesystem over dm-
crypt’s AES-XTS can be effectively mitigated.

5.5 On Replacing dm-crypt and Ext4
Fig. 6 describes the performance benefit of using StrongBox
with F2FS over the popular dm-crypt with Ext4 in ordered
journaling mode combination for both sequential and ran-
dom read and write operations of various sizes. Other than
4KB and 512KB write operations, which are instances where
baseline F2FS without StrongBox is simply slower than base-
line Ext4 without dm-crypt, StrongBox with F2FS outper-
forms dm-crypt’s AES-XTS implementation with Ext4.

These results show that configurations taking advantage
of the popular combination of dm-crypt, AES-XTS, and Ext4
could see a significant improvement in read performance
without a degradation in write performance except in cases
where small (≤ 512KB) writes dominate the workload.

Note, however, that several implicit assumptions exist in
our design. For one, we presume there is ample memory at

StrongBox: Confidentiality, Integrity, and Performance ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA

StrongBox F2FS vs dm-crypt AES-XTS Ext4-OJ
La
te
nc
y
(n
or
m
al
iz
ed

to
Ex

t4
)

4K 512K 5M 40M Mean
0.5

1.5

2

2.5

3.0

3.5

1

4.2 5.6

File Size (bytes)

unencrypted F2FS/reads StrongBox F2FS/reads dm-crypt Ext4/reads
unencrypted F2FS/writes StrongBox F2FS/writes dm-crypt Ext4/writes

Figure 6.a: Sequential I/O F2FS vs Ext4 result set.

La
te
nc
y
(n
or
m
al
iz
ed

to
Ex

t4
)

4K 512K 5M 40M Mean
0.5

1.5

2

2.5

3.0

3.5

1

4.7

File Size (bytes)

Figure 6.b: Random I/O F2FS vs Ext4 result set.

Figure 6. Comparison of Ext4 on dm-crypt and F2FS on
StrongBox. Results are normalized to unencrypted Ext4 per-
formance. Unecrypted F2FS results are shown for reference.
Points below the line are outperforming unencrypted Ext4.
Points above the line are underperforming compared to un-
encrypted Ext4.

hand to house the Merkle Tree and all other data abstractions
used by StrongBox. Efficient memory use was not a goal of
our implementation of StrongBox. In an implementation
aiming to be production ready, much more memory efficient
data structures would be utilized.
It is also for this reason that populating the Merkle Tree

necessitates a rather lengthy mounting process. In our tests,
a 1GB backing store on the odroid system can take as long
as 15 seconds to mount.

ChaCha20 vs AES: StrongBox F2FS Sequential Test

La
te
nc
y
(n
or
m
al
iz
ed

to
Ch

aC
ha
20
)

4K 512K 5M 40M Mean
0

0.5

1.5

2

1

File Size (bytes)

AES-XTS/reads AES-CTR/reads
AES-XTS/writes AES-CTR/writes

Figure 7. Comparison of AES in XTS and CTR modes versus
ChaCha20 in StrongBox; median latency of different sized
whole file sequential read and write operations normalized
to ChaCha20 (default cipher in StrongBox). Points below the
line signify AES outperforming ChaCha20. Points above the
line signify ChaCha20 outperforming AES.

5.6 Performance in StrongBox: ChaCha20 vs AES
Fig. 5 and Fig. 4 give strong evidence for our general perfor-
mance improvement over dm-crypt not being an artifact of
filesystem choice. Excluding Ext4 as a non-LFS filesystem
under which to run StrongBox, our tests show that Strong-
Box outperforms dm-crypt under an LFS filesystem in the
vast majority of outcomes.

We then test to see if our general performance improve-
ment can be attributed to the use of a stream cipher over a
block cipher. dm-crypt implements AES in XTS mode to pro-
vide full-drive encryption functionality. Fig. 7 describes the
relationship between ChaCha20, the cipher of choice for our
implementation of StrongBox, and the AES cipher. Swapping
out ChaCha20 for AES-CTR resulted in slowdowns of up to
1.33× for reads and 1.15× for writes across all configurations,
as described in Fig. 7.

Finally, we test to see if our general performance improve-
ment can be attributed to our implementation of StrongBox
rather than our choice of stream cipher. We test this by im-
plementing AES in XTS mode on top of StrongBox using
OpenSSL EVP (see: Fig. 7). StrongBox using OpenSSL AES-
XTS experiences slowdowns of up to 1.33× for reads and 1.6×
for writes compared to StrongBox using ChaCha20 (sequen-
tial, 40MB). Interestingly, while significantly less performant,
this slowdown is not entirely egregious, and suggests that
perhaps there are parts of the dm-crypt code base that would
benefit from further optimization; however, it is possible

ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA Dickens et al.

that necessary choices to harden StrongBox for a production
environment could slow it down as well.

Considering hardware support for dedicated AES instruc-
tions, Fig. 7 shows StrongBox with AES-CTR outperforms
AES-XTS. Therefore, StrongBox should still outperform dm-
crypt where AES hardware support is available.

5.7 Overhead with a Full Drive
During I/O operations under an appropriate choice of LFS,
we have shown that full-drive encryption provided by Strong-
Box outperforms full-drive encryption provided by dm-crypt.
However, this is not necessarily the case when the backing
store becomes full and the LFS is forced to cope with an
inability to write forward as efficiently.
In the case of the F2FS LFS, upon approaching capacity

and being unable to perform garbage collection effectively,
it resorts to writing blocks out to where ever it can find free
space in the backing store [22]. It does this instead of trying
to maintain an append-only guarantee. This method of exe-
cuting writes is similar to how a typical non-LFS filesystem
operates. When this happens, the F2FS aggressively causes
overwrites in StrongBox, which has a drastic impact on per-
formance.
Fig. 8 shows the impact of these (sequential) overwrites.

Read operation performance remains faster on a full Strong-
Box backing store compared to dm-crypt. This is not the
case with writes. Compared to StrongBox under non-full
conditions, 40MB sequential writes were slowed by 2.8× as
StrongBox approached maximum capacity.

5.8 Threat Analysis
Table 2 lists possible attacks and their results. It can be in-
ferred from these results and StrongBox’s design that Strong-
Box addresses its threat model and maintains confidentiality
and integrity guarantees.

6 Related Work
Some of the most popular cryptosystems offering a confi-
dentiality guarantee for data at rest employ a symmetric en-
cryption scheme known as a Tweakable Enciphering Scheme
(TES) [13, 26]. There have been numerous TES-based con-
structions securing data at rest [13, 17, 33], including the well
known XEX-based XTS operating mode of AES [4] explored
earlier in this work. Almost all TES constructions and the
storage management systems that implement them use one
or more block ciphers as their primary primitive [13, 28].

Our StrongBox implementation borrows from the design
of these systems. One in particular is dm-crypt, a Linux frame-
work employing a LinuxDeviceMapper to provide a virtual
block interface for physical block devices. Dm-crypt provides
an implementation of the AES-XTS algorithm among others
and is used widely in the Linux ecosystem [1, 8]. The algo-
rithms provided by dm-crypt all employ block ciphers [8].

Near-Full Drive F2FS Test

La
te
nc
y
(n
or
m
al
iz
ed

to
dm

-c
ry
pt
)

4K 512K 5M 40M Mean
0

0.5

1.5

2

1

3.2 3.0 2.8 2.8 3.0

File Size (bytes)

unencrypted/reads StrongBox/reads
unencrypted/writes StrongBox/writes

Figure 8. Comparison of F2FS baseline, atop dm-crypt, and
atop StrongBox. All configurations are initialized with a near-
full backing store; median latency of different sized whole
file read and write operations normalized to dm-crypt. Points
below the line are outperforming dm-crypt. Points above the
line are underperforming compared to dm-crypt.

Table 2. Attacks on StrongBox and their results

Attack Result Explanation

Nugget user data in
backing store is
mutated out-of-band
online

StrongBox
Immediately fails
with exception on

successive IO request

The MTRH is
inconsistent

Header metadata in
backing store is
mutated out-of-band
online, making the
MTRH inconsistent

StrongBox
Immediately fails
with exception on

successive IO request

The MTRH is
inconsistent

Backing store is
rolled back to a
previously consistent
state while online

StrongBox
Immediately fails
with exception on

successive IO request

TPMGLOBALVER
and RPMB secure
counter out of sync

Backing store is
rolled back to a
previously consistent
state while offline,
RPMB secure counter
wildly out of sync

StrongBox refuses to
mount; allows for
force mount with

root access

TPMGLOBALVER
and RPMB secure
counter out of sync

MTRH made
inconsistent by
mutating backing
store out-of-band
while offline, RPMB
secure counter in
sync

StrongBox refuses to
mount

TPMGLOBALVER
and RPMB secure
counter are in sync,
yet illegal data
manipulation
occurred

Instead of a block cipher, however, StrongBox uses a stream

StrongBox: Confidentiality, Integrity, and Performance ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA

cipher to provide the same confidentiality guarantee and con-
sistent or better I/O performance. Further unlike dm-crypt
and other similar virtualization frameworks, StrongBox’s
ciphering operations do not require sector level tweaks, de-
pending on the implementation. With StrongBox, several
physical blocks consisting of one or more sectors are consid-
ered as discrete logical units, i.e., nuggets and flakes.
Substituting a block cipher for a stream cipher forms the

core of several contributions to the state-of-the-art [13, 28].
Chakraborty et al. proposed STES—a stream cipher based
low cost scheme for securing stored data [13]. STES is a
novel TES which can be implemented compactly with low
overall power consumption. It combines a stream cipher and
a universal hash function via XOR and is targeting low cost
FPGAs to provide confidentiality of data on USBs and SD
cards. Our StrongBox, on the other hand, is not a TES and
does not directly implement a TES. StrongBox combines
a stream cipher with nonce “tweak” and nugget data via
XOR and is targeting any configuration employing a well-
behaved Log-structured Filesystem (LFS) at some level to
provide confidentiality of data.
Offering a transparent cryptographic layer at the block

device level has been proposed numerous times [18]. Pro-
duction implementations include storage management sys-
tems like dm-crypt. Specifically, Hein et al. proposed the
Secure Block Device (SBD) [18]—an ARM TrustZone secure
world transparent filesystem encryption layer optimized for
ANDIX OS and implemented and evaluated using the Linux
Network Block Device (NBD) driver. StrongBox is also im-
plemented and evaluated using the NBD, but is not limited
to one specific operating system. Further unlike StrongBox,
SBD is not explicitly designed for use outside of the ARM
TrustZone secure world. Contrarily, StrongBox was designed
to be used on any system that provides a subset of function-
ality provided by a Trusted Platform Module (TPM) and/or
Trusted Execution Environment (TEE). Specifically, Strong-
Box requires the availability of a dedicated hardware pro-
tected secure monotonic counter to prevent rollback attacks
and ensure the freshness of StrongBox. The primary design
goal of StrongBox is to achieve provide higher performance
than the industry standard AES-XTS algorithm utilizing a
stream cipher.
StrongBox’s design is only possible because of the avail-

ability of hardware support for security, which has been a
major thrust of research efforts [15, 19, 23, 30, 31, 34], and
is now available in almost all commercial mobile proces-
sors [16, 20, 25, 29]. Our implementation makes use of the
replay protected memory block on eMMC devices [10, 25],
but it could be reimplemented using any hardware that sup-
ports persistent, monotonic counters.

The combination of trusted hardware andmonotonic coun-
ters enables new security mechanisms. For example, van Dijk
et al. use this combination allow clients to securly store data
on an untrusted server [32]. Like StrongBox, their approach

relies on trusted hardware (TPM specifically [16]), logs, and
monotonic counters. The van Dijk et al. approach, however,
uses existing secure storage and is not concerned with stor-
age speed. StrongBox uses these same mechanisms along
with novel metadata layout and system design to solve a
different problem: providing higher performance than AES-
XTS based approaches.

Achieving on-drive data integrity protection through the
use of checksums has been used by filesystems and many
other storagemanagement systems. Examples include ZFS [3]
and others [18]. For our implementation of StrongBox, we
used the Merkle Tree library offered by SBD to manage our
in-memory checksum verification. A proper implementation
of StrongBox need not use the SDB SHA-256 Merkle Tree
library. It was chosen for convenience.

7 Conclusion
The conventional wisdom is that securing data at rest re-
quires one must pay the high performance overhead of en-
cryption with AES is XTS mode. This paper shows that tech-
nological trends overturn this conventional wisdom: Log-
structured file systems and hardware support for secure
counters make it practical to use a stream cipher to secure
data at rest. We demonstrate this practicality through our im-
plementation of StrongBox which uses the ChaCha20 stream
cipher and the Poly1305 MAC to provide secure storage and
can be used as a drop-in replacement for dm-crypt.
Our empirical results show that under F2FS—a modern,

industrial-strength Log-structured file system—StrongBox
provides upwards of 2× improvement on read performance
and average 1.27× improvement on write performance com-
pared to dm-crypt. Further, our results show that F2FS plus
StrongBox provides a higher performance replacement for
Ext4 backed with dm-crypt. We make our implementation of
StrongBox available open source so that others can extend
it or compare to it.4 Our hope is that this work motivates
further exploration of fast stream ciphers as replacements
for AES-XTS for securing data at rest.

Acknowledgments
We would like to thank the anonymous reviewers for their
insightful feedback and comments. This material is based
upon work supported by the National Science Foundation
under Grant No. CNS-1526304. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the author and do not necessarily reflect the
views of the National Science Foundation.

4https://git.xunn.io/research/buselfs-public

ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA Dickens et al.

References
[1] [n. d.]. Android Open Source Project: Full-Disk Encryption. ([n. d.]).

https://source.android.com/security/encryption/full-disk
[2] [n. d.]. RedHat: Device-mapper Resource Page. ([n. d.]). https://www.

sourceware.org/dm
[3] 2005. Oracle blog: ZFS End-to-End Data Integrity. (2005). https:

//blogs.oracle.com/bonwick/zfs-end-to-end-data-integrity
[4] 2008. The XTS-AES Tweakable Block Cipher. (2008). IEEE Std

1619-2007.
[5] 2010. Recommendation for Block Cipher Modes of Operation: The

XTS-AES Mode for Confidentiality on Storage Devices. (2010). http:
//nvlpubs.nist.gov/ NIST Special Publication 800-38E.

[6] 2011. Message Authentication Code Standard ISO/IEC 9797-1:2011.
(2011). https://www.iso.org/standard/50375.html

[7] 2012. A block device in userspace. (2012). https://github.com/acozzette/
BUSE

[8] 2013. Linux kernel device-mapper crypto target. (2013). https://gitlab.
com/cryptsetup/cryptsetup

[9] 2014. TLS Symmetric Crypto. (2014). https://www.imperialviolet.org/
2014/02/27/tlssymmetriccrypto.html

[10] 2015. EMBEDDED MULTI-MEDIA CARD (eâĂćMMC), ELEC-
TRICAL STANDARD (5.1). (2015). https://www.jedec.org/
standards-documents/results/jesd84-b51

[11] Daniel J. Bernstein. 2005. The Poly1305-AES message-authentication
code. Technical Report. University of Illinois at Chicago.

[12] Daniel J. Bernstein. 2008. ChaCha, a variant of Salsa20. Technical
Report. University of Illinois at Chicago.

[13] D. Chakraborty, C. Mancillas-LÃşpez, and P. Sarkar. 2015. STES: A
Stream Cipher Based Low Cost Scheme for Securing Stored Data. IEEE
Trans. Comput. 64, 9 (2015), 2691–2707. https://doi.org/10.1109/TC.
2014.2366739

[14] Michael Cornwell. 2012. Anatomy of a Solid-state Drive. Queue 10, 10,
Article 30 (Oct. 2012), 7 pages. https://doi.org/10.1145/2381996.2385276

[15] Andrew Ferraiuolo, Rui Xu, Danfeng Zhang, Andrew C. Myers, and
G. Edward Suh. 2017. Verification of a Practical Hardware Security
Architecture Through Static Information Flow Analysis. In Proceed-
ings of the Twenty-Second International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
2017, Xi’an, China, April 8-12, 2017. 555–568. https://doi.org/10.1145/
3037697.3037739

[16] Trusted Computing Group. 2008. TCG: Trusted platform module
summary. (2008).

[17] Shai Halevi and Phillip Rogaway. 2003. A Tweakable Enciphering
Mode. Springer Berlin Heidelberg, Berlin, Heidelberg, 482–499. https:
//doi.org/10.1007/978-3-540-45146-4_28

[18] D. Hein, J. Winter, and A. Fitzek. 2015. Secure Block Device – Secure,
Flexible, and Efficient Data Storage for ARM TrustZone Systems. In
2015 IEEE Trustcom/BigDataSE/ISPA, Vol. 1. 222–229. https://doi.org/
10.1109/Trustcom.2015.378

[19] Matthew Hicks, Cynthia Sturton, Samuel T. King, and Jonathan M.
Smith. 2015. SPECS: A Lightweight Runtime Mechanism for Protect-
ing Software from Security-Critical Processor Bugs. In Proceedings
of the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’15, Istanbul,
Turkey, March 14-18, 2015. 517–529. https://doi.org/10.1145/2694344.
2694366

[20] Darko Kirovski, Milenko Drinić, and Miodrag Potkonjak. 2002. En-
abling Trusted Software Integrity. In Proceedings of the 10th Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS X). ACM, New York, NY, USA, 108–120.
https://doi.org/10.1145/605397.605409

[21] Ryusuke Konishi, Yoshiji Amagai, Koji Sato, Hisashi Hifumi, Seiji
Kihara, and Satoshi Moriai. 2006. The Linux Implementation of a
Log-structured File System. SIGOPS Oper. Syst. Rev. 40, 3 (July 2006),

102–107. https://doi.org/10.1145/1151374.1151375
[22] Changman Lee, Dongho Sim, Jooyoung Hwang, and Sangyeun Cho.

2015. F2FS: A New File System for Flash Storage. In 13th USENIX Con-
ference on File and Storage Technologies (FAST 15). USENIX Association,
Santa Clara, CA, 273–286. https://www.usenix.org/conference/fast15/
technical-sessions/presentation/lee

[23] Xun Li, Vineeth Kashyap, Jason K. Oberg, Mohit Tiwari, Vasanth Ram
Rajarathinam, Ryan Kastner, Timothy Sherwood, Ben Hardekopf, and
Frederic T. Chong. 2014. Sapper: a language for hardware-level se-
curity policy enforcement. In Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’14, Salt Lake City, UT, USA,
March 1-5, 2014. 97–112. https://doi.org/10.1145/2541940.2541947

[24] ARM Limited. 2009. ARM security technology: Building a secure
system using TrustZone technology. (2009). PRD29-GENC-009492C.

[25] Anil Kumar Reddy, P. Paramasivam, and Prakash Babu Vemula. 2015.
Mobile secure data protection using eMMC RPMB partition. In 2015
International Conference on Computing and Network Communications
(CoCoNet). 946–950. https://doi.org/10.1109/CoCoNet.2015.7411305

[26] Phillip Rogaway. 2004. Efficient Instantiations of Tweakable Blockciphers
and Refinements to Modes OCB and PMAC. Technical Report. University
of California at Davis.

[27] Mendel Rosenblum and John K. Ousterhout. 1992. The Design and
Implementation of a Log-structured File System. ACM Trans. Comput.
Syst. 10, 1 (Feb. 1992), 26–52. https://doi.org/10.1145/146941.146943

[28] Palash Sarkar. 2009. Tweakable Enciphering Schemes From Stream
Ciphers With IV. Technical Report. Indian Statistical Institute.

[29] Global Platform Device Technology. 2010. TEE client API specification
version 1.0. (2010). GPD_SPE_007.

[30] Mohit Tiwari, Jason Oberg, Xun Li, Jonathan Valamehr, Timothy E.
Levin, Ben Hardekopf, Ryan Kastner, Frederic T. Chong, and Timothy
Sherwood. 2011. Crafting a usable microkernel, processor, and I/O
system with strict and provable information flow security. In 38th
International Symposium on Computer Architecture (ISCA 2011), June
4-8, 2011, San Jose, CA, USA. 189–200. https://doi.org/10.1145/2000064.
2000087

[31] Jonathan Valamehr, Melissa Chase, Seny Kamara, Andrew Putnam,
Daniel Shumow, Vinod Vaikuntanathan, and Timothy Sherwood. 2012.
Inspection resistant memory: Architectural support for security from
physical examination. In 39th International Symposium on Computer
Architecture (ISCA 2012), June 9-13, 2012, Portland, OR, USA. 130–141.
https://doi.org/10.1109/ISCA.2012.6237012

[32] Marten van Dijk, Jonathan Rhodes, Luis F. G. Sarmenta, and Srinivas
Devadas. 2007. Offline Untrusted Storage with Immediate Detection of
Forking and Replay Attacks. In Proceedings of the 2007 ACM Workshop
on Scalable Trusted Computing (STC ’07). ACM, New York, NY, USA,
41–48. https://doi.org/10.1145/1314354.1314364

[33] Peng Wang, Dengguo Feng, and Wenling Wu. 2005. HCTR: A Variable-
Input-Length Enciphering Mode. Springer Berlin Heidelberg, Berlin,
Heidelberg, 175–188. https://doi.org/10.1007/11599548_15

[34] Rui Zhang, Natalie Stanley, Christopher Griggs, Andrew Chi, and Cyn-
thia Sturton. 2017. Identifying Security Critical Properties for the Dy-
namic Verification of a Processor. In Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS 2017, Xi’an, China, April 8-12,
2017. 541–554. https://doi.org/10.1145/3037697.3037734

https://source.android.com/security/encryption/full-disk
https://www.sourceware.org/dm
https://www.sourceware.org/dm
https://blogs.oracle.com/bonwick/zfs-end-to-end-data-integrity
https://blogs.oracle.com/bonwick/zfs-end-to-end-data-integrity
http://nvlpubs.nist.gov/
http://nvlpubs.nist.gov/
https://www.iso.org/standard/50375.html
https://github.com/acozzette/BUSE
https://github.com/acozzette/BUSE
https://gitlab.com/cryptsetup/cryptsetup
https://gitlab.com/cryptsetup/cryptsetup
https://www.imperialviolet.org/2014/02/27/tlssymmetriccrypto.html
https://www.imperialviolet.org/2014/02/27/tlssymmetriccrypto.html
https://www.jedec.org/standards-documents/results/jesd84-b51
https://www.jedec.org/standards-documents/results/jesd84-b51
https://doi.org/10.1109/TC.2014.2366739
https://doi.org/10.1109/TC.2014.2366739
https://doi.org/10.1145/2381996.2385276
https://doi.org/10.1145/3037697.3037739
https://doi.org/10.1145/3037697.3037739
https://doi.org/10.1007/978-3-540-45146-4_28
https://doi.org/10.1007/978-3-540-45146-4_28
https://doi.org/10.1109/Trustcom.2015.378
https://doi.org/10.1109/Trustcom.2015.378
https://doi.org/10.1145/2694344.2694366
https://doi.org/10.1145/2694344.2694366
https://doi.org/10.1145/605397.605409
https://doi.org/10.1145/1151374.1151375
https://www.usenix.org/conference/fast15/technical-sessions/presentation/lee
https://www.usenix.org/conference/fast15/technical-sessions/presentation/lee
https://doi.org/10.1145/2541940.2541947
https://doi.org/10.1109/CoCoNet.2015.7411305
https://doi.org/10.1145/146941.146943
https://doi.org/10.1145/2000064.2000087
https://doi.org/10.1145/2000064.2000087
https://doi.org/10.1109/ISCA.2012.6237012
https://doi.org/10.1145/1314354.1314364
https://doi.org/10.1007/11599548_15
https://doi.org/10.1145/3037697.3037734

	Abstract
	1 Introduction
	2 Motivation
	2.1 Performance Potential
	2.2 Append-mostly Filesystems
	2.3 Threat Model

	3 StrongBox System Design
	3.1 Backing Store Function and Layout
	3.2 Metadata-aware Cryptographic Driver
	3.3 Defending Against Rollback Attacks
	3.4 Recovering from Inconsistent State

	4 StrongBox Implementation
	4.1 Deriving Subkeys
	4.2 A Secure, Persistent, Monotonic Counter
	4.3 LFS Garbage Collection
	4.4 Overhead

	5 Evaluation
	5.1 Experimental Setup
	5.2 Experimental Methodology
	5.3 StrongBox Read Performance
	5.4 StrongBox Write Performance
	5.5 On Replacing dm-crypt and Ext4
	5.6 Performance in StrongBox: ChaCha20 vs AES
	5.7 Overhead with a Full Drive
	5.8 Threat Analysis

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

