
Lemonade from Lemons: Harnessing Device Wearout to Create
Limited-Use Security Architectures

Zhaoxia Deng
zhaoxia@cs.ucsb.edu

Department of Computer Science,
University of California, Santa Barbara

Ariel Feldman Stuart A. Kurtz Frederic T. Chong
{arielfeldman,stuart,chong}@cs.uchicago.edu

Department of Computer Science,
University of Chicago

ABSTRACT
Most architectures are designed to mitigate the usually undesirable
phenomenon of device wearout. We take a contrarian view and har-
ness this phenomenon to create hardware security mechanisms that
resist attacks by statistically enforcing an upper bound on hardware
uses, and consequently attacks. For example, let us assume that a
user may log into a smartphone a maximum of 50 times a day for
5 years, resulting in approximately 91,250 legitimate uses. If we
assume at least 8-character passwords and we require login (and
retrieval of the storage decryption key) to traverse hardware that
wears out in 91,250 uses, then an adversary has a negligible chance
of successful brute-force attack before the hardware wears out, even
assuming real-world password cracking by professionals. M-way
replication of our hardware and periodic re-encryption of storage
can increase the daily usage bound by a factor of M.

The key challenge is to achieve practical statistical bounds on
both minimum and maximum uses for an architecture, given that
individual devices can vary widely in wearout characteristics. We
introduce techniques for architecturally controlling these bounds and
perform a design space exploration for three use cases: a limited-
use connection, a limited-use targeting system and one-time pads.
These techniques include decision trees, parallel structures, Shamir’s
secret-sharing mechanism, Reed-Solomon codes, and module repli-
cation. We explore the cost in area, energy and latency of using these
techniques to achieve system-level usage targets given device-level
wearout distributions. With redundant encoding, for example, we
can improve exponential sensitivity to device lifetime variation to
linear sensitivity, reducing the total number of NEMS devices by 4
orders of magnitude to about 0.8 million for limited-use connections
(compared with 4 billion if without redundant encoding).

CCS CONCEPTS
• Security and privacy → Hardware security implementation;

KEYWORDS
Degradation-based security measures, hardware security architec-
tures, NEMS

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISCA ’17, June 24-28, 2017, Toronto, ON, Canada
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4892-8/17/06. . . $15.00
https://doi.org/10.1145/3079856.3080226

ACM Reference format:
Zhaoxia Deng, Ariel Feldman, Stuart A. Kurtz, and Frederic T. Chong. 2017.
Lemonade from Lemons: Harnessing Device Wearout to Create Limited-Use
Security Architectures . In Proceedings of ISCA ’17, Toronto, ON, Canada,
June 24-28, 2017, 14 pages.
https://doi.org/10.1145/3079856.3080226

1 INTRODUCTION
Wearout is not a new problem in computer architecture. Flash memo-
ries are the most well-known memory technologies with the wearout
problem, and people have been working on efficient solutions to it for
decades. In the big data era, the problem is even worse with continu-
ously increasing density and capacity demand for memory. The life-
time of a flash cell dropped from 10,000 times to 2,000 times when
the cell dimension scales down from 50nm to 20nm [41]. Moreover,
ITRS [13] envisions many new technologies such as non-volatile
memories (NVM), nanoelectromechanics (NEMS), and molecular
devices, to solve the power-consumption problem in CMOS so as to
sustain Moore’s law. However, the wearout problem also exists in
these technologies [44, 49, 67, 68]. The down-scaling from MEMS
to NEMS, for instance, results in exponential degradation of de-
vice reliability [34, 37]. Representative NEMS contact switches
can only work for one cycle to several thousand cycles without fail-
ures [15, 23, 37, 53]. As a result, existing research on these emerging
technologies has been focused on how to extend the lifetime before
they can really be applied.

Meanwhile, we take a step back and find that wearout can help
build purposely limited-use security architectures. In applications
that abusive accesses or adversarial accesses are not desired, wearout
can provide strong security by automatically destroying the device
and hence protects any secure information in it. For example, for-
ward secrecy encryption [20, 26] in any public key systems [3, 40]
(eg. the encryption of e-mail archives) requires a one-time key for
the encryption of each message so that the compromise of a single
private key does not compromise all the past messages. Traditionally,
the one-time access of the keys is not enforced so the system still
cannot defend against reusing or stealthy replications of the keys.
Taking advantage of wearout, we can store the keys in a security ar-
chitecture that wears out exactly after one access so that the one-time
usage of keys is physically enforced and the security of messages
will not be compromised.

However, taking advantage of wearout to create hardware security
mechanisms is challenging. The problems we face in designing the
security architectures include:

• How do we design for system-level minimum and maxi-
mum usage in the face of probabilistic wearout behaviors
of each device and process variations among devices?

https://doi.org/10.1145/3079856.3080226
https://doi.org/10.1145/3079856.3080226

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada Z. Deng et al.

• Depending on security goals and usage targets, how should
we adjust the parameters in our design to minimize area
and energy cost?

• How do we balance the fabrication cost of more consistent
devices (in terms of wearout) with the area cost of archi-
tectural techniques to achieve consistency (eg. redundancy
and encoding)?

In this paper, we propose a methodology to create security archi-
tectures by harnessing device wearout. Our contributions are as
follows:

• We use the two-parameter Weibull distribution to model the
time to failure of each device. The two parameters in the
model can be used to characterize different kinds of wearout
devices. Manufacturing and process variations among in-
dividual devices are accommodated by introducing more
variations into the distribution.

• Based on the probabilistic wearout model, we provide statis-
tical guarantees on system-level usage bounds by designing
application-dependent architectures and exploiting redun-
dant encoding techniques. The system-level usage bounds
ensure both reliability for legitimate users and security to
defend against brute-force attackers.

• Extensive engineering space exploration has been performed
to study the trade-offs among target access bounds, area
cost, fabrication cost, etc.

In the following sections, we first introduce the wearout devices
used in our security architectures and describe the probabilistic
wearout model in Section 2. Then we talk about the threat model in
Section 3 for three use cases of hardware security mechanisms: a
limited-use connection, a limited-use targeting system and one-time
pads, discussed in Section 4, 5 and 6, respectively. Note also, we
talk about the limitations of the degradation-based security measures
in Section 7. Then we discuss the literature of hardware security in
Section 8. Finally, we conclude our work in Section 9.

2 DEVICE WEAROUT MODEL
2.1 NEMS contact switches
NEMS contact switches exhibit promising properties such as nano-
scale physical dimensions, near zero OFF-state leakage, and large
ON/OFF ratios. Representative NEMS contact switches are com-
posed of a movable active element and an opposing electrode which
interact by both electrical and mechanical forces to open and close
the switch. When a pull-in voltage is applied to the active element,
electrostatic forces deform the active element towards the opposing
electrode so as to close the switch. After the voltage is removed, elas-
tic forces pull the active element away from the opposing electrode
so that the switch is open again.

Among other technologies, NEMS are advantageous in building
limited-use security architectures because they have relatively tight
wearout bounds and they are insensitive to harsh environments [37]
including radiation, temperature, external electric fields, etc. Most
fabricated NEMS switches can work properly for only one to several
thousand cycles [15, 23, 37, 53]. Recently, NEMS lifetime can be ex-
tended up to millions or billions of cycles while at the cost of scaling
up the physical dimensions [24, 28, 57]. The wearout characteris-
tics of NEMS switches are highly dependent on the materials and

0.0 0.5 1.0 1.5 2.0

Time to failure (cycles) 1e6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

P
D

F

1e 6

PDF
β=1

β=6

β=12

0.0

0.2

0.4

0.6

0.8

1.0

R
e
lia

b
ili

ty

Weibull wearout model

Reliability
β=1

β=6

β=12

Figure 1: Weibull wearout model with different shape parameters. The
red lines (β = 12) show the lifetime plots of MEMS devices [55] with
geometrical variations.

structures employed. Generally speaking, any kind of electrical and
mechanical aging, adhesion, fracture or burnout in the active element
or electrode are potentially responsible for the failures of NEMS
switches. For example, in [53], graphene-based NEMS switches
were recorded to work over 500 cycles and then failed because the
over-bent graphene was unable to recover. [23] reported that NEMS
switches with silicon carbide nanowires can switch for tens of cycles
before the nanowire was stuck to the electrode. In [35], the silicon
carbide cantilevered NEMS switches failed after billions of cycles
because of fracture at room temperature and melting at 500◦C.

Furthermore, due to their insensitivity to harsh environment,
NEMS switches can help defend against attacks by varying the
dynamic environment. For example, it is hard for attackers to ex-
tend the lifetime of NEMS switches by controlling the operating
temperatures, especially these made of high temperature friendly
materials such as SiC. Poly-SiC NEMS switches [28] were recorded
to operate properly for at least 105 ∼ 106 cycles without failures
at 500◦C , comparable to those at 25◦C. [35] has shown that SiC
NEMS switches can operate more than 21 billion cycles at 25◦C
while more than 2 billion cycles at 500◦C. However, failures at 25◦C
were characterized by fracture while failures at 500◦C were probably
caused by melting. For security architectures, we assume the life-
time at room temperature (25◦C) as the device wearout bound. More
failures at extremely high temperatures will destroy the device faster,
but will not compromise the secret information in them. At extremely
low temperatures (eg. after freezing), it is hard to extend the device
lifetime either because failures from fracture cannot be avoided.
These features have enabled NEMS switches to be applied to secu-
rity or harsh environment applications, eg. one-time-programmable
FPGA interconnects in [29].

2.2 Probabilistic wearout model
In the reliability literature [56, 60], Weibull distributions have been
commonly used to model the failure distributions of electronic de-
vices [38], such as the breakdown of gate oxides in CMOS [50].
Similar models can also be applied to micro-/nano- scale devices [8].
It has been shown that the Weibull distribution can accurately fit
fracture-strength data of emerging materials for NEMS/MEMS [11,
22], fracture-test data of cantilever beam MEMS [18], and tensile-
strength data sets of carbon nanotubes [10].

Lemonade from Lemons ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

Hence, we take the general two-parameter Weibull distribution
to model the failure distribution of NEMS switches in this paper.
Assume that x represents the time to failure. Then the probability
density function (PDF) of the time to failure is:

f (x) =
β

α

(x
α

)β−1
e−(

x
α
)

β

(1)

and the cumulative density function (CDF) is:

F (x) = 1− e−(
x
α
)

β

(2)
Based on the CDF, the reliabity function is derived as follows:

R(x) = 1−F (x) = e−(
x
α
)

β

(3)
In all of the above equations, α is the scale parameter and β is the
shape parameter. The two parameters can be estimated by fitting the
lifetime data of a large population of similar devices. α approximates
to the mean time to failure, and β mainly determines the variation
of reliability degradation among these devices.

Figure 1 shows the failure PDF (Equation 1) and reliability func-
tion (Equation 3) with different β s. The variation of α will only
change the axis scales. β is usually larger (sharper peaks in the PDF)
with more homogeneous devices in which the wearout happens more
consistently.

Since the manufacturing processes are less mature at nano-scales,
we accommodate the process variations in αs and β s. Typically,
process variations will result in lower β s. Trevor S. Slack et al. [55]
has simulated Weibull lifetime models of MEMS devices consider-
ing geometrical variations, material variations in elastic modulus,
resistance stress, etc. According to their simulation results, αs and
β s are 2.6 million cycles and 12.94 with only geometrical variations,
2.2 million cycles and 7.2 with material elasticity variations, 1.8
million cycles and 8.58 with material resistance variations. We will
experiment with various αs and β s for an extensive engineering
space exploration in later sections.

3 THREAT MODEL
Since our target devices are often mobile devices, we assume the
attacker has physical access to the device. In the cases of the limited-
use connection and targeting system, we want to defend against
brute-force attacks to decrypt the device by physically limiting the
number of accesses to the storage decryption key. The cracking
approaches we target are professional attacks that can exploit the
nonuniform guessability in real-world passwords [62], as discussed
in Section 4.1.

In the case of one-time pads, we want to defend against stealthy
replications of device (the archaically named “evil maid attack”).
The attackers may clone the one-time pads and make two copies,
one copy to replace the receiver’s original one and another copy for
themselves to break the encryption in the future message transmis-
sion between the sender and receiver. Our secure architectures will
resist cloning by making it difficult for attackers to ever read the
entire contents of the device memory.

In this paper we assume the chip fabrication is trusted. And we
leave as future work techniques to allow secure, one-time program-
ming of our devices by end users. We assume the secret information
is one-time programmed in the device memory at fabrication time
and end-users will only need read operations through the NEMS
network.

4 A LIMITED-USE CONNECTION
Apple iOS has developed many security features with integrated
secure software and hardware support. However, to keep the devices
easy to use, the most straightforward way to protect the devices is to
use a passcode that is configurable by users. To protect the passcode
from brute-force attacks, iOS provides several mechanisms [4]: 1)
it automatically wipes out all data on the device if someone has
consecutively failed 10 times in unlocking the device. 2) it has
incremental time delays after each incorrect passcode attempt.

However, all these guarding mechanisms are recently reported
to be easily bypassed. A company called MDSec [2] managed to
bypass the internal counter in iPhone by cutting its power right
before the counter is incremented, while still getting the passcode
validation result. Therefore, the counter never gets updated and the
attacker can break the passcode as fast as the hardware can support.
[54] demonstrated similar attack to the counter through NAND mir-
roring. An iPhone 5c was forced to power down and recover from
a backup NAND memory to restore the previous state once every a
few passcode attempts, which enabled unlimited attempts to crack
the passcode. Another hacking case exploited firmware updates [1].
iPhone can launch firmware updates automatically without the pass-
code, which means that the guarding mechanisms are disabled or the
counter is disabled during the updates. Then brute-force attacks can
easily succeed, especially with real-world biased passcodes.

Although some vulnerabilities mentioned above have been patched,
the real problem with software solutions is that they can not prevent
unknown vulnerabilities. Therefore, we propose to exploit NEMS
switches to build a limited-use connection that can physically limit
the number of accesses to the storage decryption key. The right
passcode and the storage decryption key are needed to successfully
decrypt the device storage and thus validate the passcode. We en-
force a traversal to the limited-use connection before each read of
the storage encryption key. After each passcode attempt, the failure
probability of the connection increments. After a certain number of
accesses, the connection will wear out automatically and the smart-
phone will be locked forever. Compared with security patches, our
solution provides strong hardware enforced security, which cannot
be compromised even under government’s intervention.

In Section 4.1, we talk about the design principles and design
options for the limited-use connection using NEMS switches. And
we discuss system integration issues with NEMS switches in Sec-
tion 4.2. Finally, we explore the engineering space given the design
options in Section 4.3.

4.1 Using wearout to build a limited-use
connection

The design of the limited-use connection needs to follow two princi-
ples:

• The connection should work reliably for all legitimate ac-
cesses during the smartphone’s lifetime.

• The connection should wear out before attackers have high
probabilities to guess the passcode.

As an example, we calculated the legitimate access bound (LAB) for
a smartphone approximately as follows:

LAB = 5∗365∗50 = 91,250 (4)

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada Z. Deng et al.

...

N copies

(a)

...

N copies

...

...

n series

(b)

...

...

...N copies

n in parallel

(c)

...

...

...N copies

n in parallel

Sn-1

S0

Redundant encoding

S1

S0

S1

Sn-1

(d)
Figure 2: Design options for the limited-use connection using NEMS switches. Fig 2a uses N copies of single NEMS switches. Fig 2b uses N copies of
n NEMS switches in series. Fig 2c uses N copies of n NEMS switches in parallel. Fig 2d uses same parallel structures but with redundant encoding.

If the real LAB is several times larger than that, we provide M-way
replication of our entire architecture to scale the LAB by a factor of
M, as described in Section 4.1.5.

The main challenge in designing the security architectures is how
to control the system-level reliability degradation window [t1, t2], as
indicated in the two principles. The lower bound t1 should be greater
than the LAB while the upper bound t2 should be less than the mini-
mum guesses needed to crack any passwords. According to Blase
Ur et al.’s work of measuring real-world password guessability [62],
professional attackers usually try passwords in the order of empiri-
cal popularity. For 8-character passwords including characters from
all different classes (lowercase letters, uppercase letters, numbers,
and special characters), only a few very popular passwords can be
guessed within 91,250 attempts. The guessing probability increases
to 1% and 2% with 100,000 and 200,000 attempts, respectively.

In the following sections, we first attempt to design security ar-
chitectures that wear out as quickly as possible after the LAB. We
focus on seeking for architectural techniques that can help control
the degradation window. Then we extend the upper bound to 100,000
and 200,000 accesses if the software helps reject the most popular
1% and 2% passwords, discussed in Section 4.3.

According to the design principles, we consider four possible
design options, as illustrated in Figure 2. These design options are
explained in detail as follows.

4.1.1 N copies of single NEMS switches. With a single NEMS
switch, it is difficult to meet the system-level demand of minimum
and maximum accesses. On one hand, the empirical lifetime of a
single NEMS switch is usually not as long as the LAB. On the other
hand, even if there exists such a NEMS switch, the degradation
window expands millions of cycles, as shown in Figure 1. Thus,
we consider using N copies of NEMS switches, which can divide
the system-level access bounds by a factor of N. Then the design
principles for each copy are adjusted as follows:

• Each copy should work reliably for LAB
N accesses.

• Each copy should wear out before LAB
N +1 accesses.

Although the second requirement still requires small degradation
windows, the first requirement scales the mean value down to LAB

N .
This down-scaling helps create a small degradation window, as
shown in Figure 3a.

However, when α is very small, the lifetime of the device is
expected to be very small. The manufacturing and process variability
is probably hard to control for such brittle and fragile devices. We
will discuss more architectural options next to avoid such challenges
in fabrication while still satisfying both design requirements.

4.1.2 N copies of n NEMS switches in series. Instead of looking
for NEMS switches that can fail extremely fast, we consider chaining
NEMS switches in series to accelerate the wearout, as in Figure 2b.
In the chaining architecture, if any single NEMS switch in the chain
fails, the whole chain fails. Unfortunately, we found that increasing
the number of NEMS switches in the chain has no significant impact
on the failure rate.

Assume we have n NEMS switches in series. Then the reliability
of the chain is:

R(x) =
(

e−(
x
α
)

β

)n
= e−n(x

α
)

β

(5)

Compared with the reliability function for a single device in Equa-
tion 3, n devices with α in series are equivalent to a single device
with α

n(1/β) . Let the denominator equals y: y = n(1/β). Then we get:

n = yβ . If we want to increase y to scale down α as in Figure 3a,
then n should increase to y12 in each copy with β = 12. To avoid the
explosion of NEMS switches, we discard this option in the following
discussion.

4.1.3 N copies of NEMS switches in parallel. Here we propose
another technique to control the degradation window, which is ex-
ploiting parallel structures to improve the system reliability before
all devices wear out, as shown in Figure 2c. Assuming N copies of
parallel structures, the requirements for each copy are as follows:

• At least one NEMS switch in each copy should work reli-
ably for LAB

N accesses.
• All NEMS switches in each copy should wear out before

LAB
N +1 accesses.

Assume each copy has n NEMS switches in parallel. The reliabil-
ity of this parallel structure is :

R(x) = 1−
(

1− e−(
x
α
)

β

)n
(6)

The redundancy in the parallel structure provides error tolerance
so that the high reliability threshold is pushed toward the degrada-
tion edge, as shown in Figure 3b. With 98% reliability, the parallel

Lemonade from Lemons ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time to failure (cycles)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

P
D

F

PDF β=12

0.0

0.2

0.4

0.6

0.8

1.0

R
e
lia

b
ili

ty

Weibull wearout model

Reliability β=12

(a) By scaling α down, we get a degradation
window within 1. Given α = 1.7 and β = 12,
the reliability of each device is close to 1 when
t = 1, but close to 0 when t = 2.

7 8 9 10 11 12 13 14

Time to failure (cycles)

0.0

0.2

0.4

0.6

0.8

1.0

R
e
lia

b
ili

ty

Using parallel devices with Weibull wearout

1 device

20 devices

40 devices

60 devices

(b) Using parallel NEMS switches to push the
high reliability threshold toward the degra-
dation edge. α = 9.3 and β = 12 for all NEMS
switches.

8 10 12 14 16 18 20 22 24 26 28 30 32

Time to failure (cycles)

0.0

0.2

0.4

0.6

0.8

1.0

R
e
lia

b
ili

ty

Using Reed-Solomon codes in 60 parallel devices

k=1

k=10

k=20

k=30

k=60

(c) Using redundant encoding in parallel
structures to accelerate degradation. α = 20
and β = 12 for all NEMS switches.

Figure 3: Different techniques to control the hardware degradation window

structure with 40 devices can work for the 10th access. With only
2.2% probability the parallel structure will continue working for the
11th access. In this design option, the total number of devices may
increase, from 91,250 to 365,000 (40 ∗ (91,250

/
10) = 365,000)

approximately, but the mean time to failure of NEMS switches is
relaxed from one to about ten cycles.

4.1.4 Parallel NEMS switches with redundant encoding. In this
section, we introduce Shamir’s secret sharing mechanism and re-
dundant encoding techniques to further speed up the degradation of
the limited-use connection. Instead of using highly redundant and
reliable 1-out-of-n parallel structures, we require at least k NEMS
switches working in a parallel structure in order to decrypt the device
storage, which results in a k-out-of-n parallel structure. Increasing k
to some extent tightens the wearout bounds of each parallel structure
so that the connection wears out faster. The challenging part, how-
ever, is that the k-out-of-n parallel structure should provide reliable
connection when k or more NEMS switches work properly but wear
out quickly when only k−1 or less NEMS switches do the same.

To enforce that, we exploit Shamir’s secret sharing mechanism
and redundant encoding techniques. The general idea is the follow-
ing: We encode the storage decryption key into n components and
spread them in n read-destructive storage connected by the NEMS
switches in a parallel structure. The encoding mechanism enforces
that at least k components are needed to successfully get the key
while no knowledge about the key will be revealed with less than k
components.

Shamir’s secret-sharing scheme. Shamir’s secret-sharing scheme [51]
constructs fast degradation codes. One of its classical scenarios is the
secret sharing among many people. On one hand, the scheme allows
efficient and reliable secret sharing if at least k out of n people autho-
rize accesses to the secret. On the other hand, the scheme prevents
leaking any information about the secret if there is only authoriza-
tion from k− 1 people or less. The scheme is also called a (k,n)
threshold scheme and its reliability degrades immediately at k−1.
Unlike classical secret-sharing scenarios that tolerate partial errors
for more efficient sharing (authorizing access with the majority of
people’s permission [51] or matching interests with the majority of
attributes [31]), our security architectures need to tolerate erasures
from device failures.

The encoding and decoding in Shamir’s secret sharing scheme is
based on polynomial construction and interpolation. The insight is
that given k independent points on a 2D plane, there is one and only
one polynomial of degree k−1 that passes through all the k points.
The encoding algorithm involves constructing such a polynomial of
degree k−1 with the secret hidden in the coefficients:

q(x) = a0 +a1x+a2x2 + ...+ak−1xk−1 (7)
With this polynomial, we encode the secret into n points, for in-
stance, q(1), ..., q(n). The n points are then distributed to n people
(or n devices) in the security application. Given any k points, all
coefficients can be easily computed by interpolation so as to recover
the secret. With k−1 points or less, however, no information about
the secret can be inferred.

Error correction codes with fast degradation. Reed-Solomon codes [31,
39] are the error correction version of Shamir’s secret-sharing scheme
and they are commonly used in the error correction of large amounts
of data in devices such as flash disks, CDs and DVDs. Theoretically,
other linear codes could also construct similar (k,n) threshold secret
sharing schemes, but it is hard to reason about the security because
of the hardness of approximating the minimum distance of any linear
code [21].

Figure 3c shows the reliability of a parallel structure with Reed-
solomon codes. With redundant encoding, the reliability of this
security architecture becomes:

R(x) =
n

∑
i=k

(
n
i

)(
e−(

x
α
)

β

)i(
1− e−(

x
α
)

β

)n−i
(8)

We use 60 NEMS switches in the parallel structure and can relax
the wearout bound for each NEMS switch to around 20 cycles. With
k = 1, the degradation window size is about 2, while with k = 30, the
degradation window size reduces to about 1, as shown in Figure 3c.
With k = 30, the parallel structure provides 92% reliability for the
20th access while only 2% probability for the 21st access. However,
when k is close to the total number of parallel devices in the structure,
the reliability degrades very early that the degradation window is
stretched out again.

Assisted with Reed-Solomon codes, we are able to build the
limited-use connection with approximately the same number of
devices (60∗ (91,250

/
20) = 365,000) compared with the parallel

structure without encoding, but we can further relax the wearout

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada Z. Deng et al.

bound to 20 cycles. The overhead, however, includes the encod-
ing/decoding complexity and extra storage for the component keys.

4.1.5 M-Way Replication of Modules. A legitimate usage factor
of 50 times per day is potentially low for some users, so we propose
to support increasing this usage by a factor of M by replicating
our entire structure M times. The replicated modules must be used
serially and each must employ a new password. In this way, an
attacker can only attack each module separately to its upper access
bound, but the user can achieve usage that is the sum of the lower
access bounds of all M modules.

The cost of this scheme, however, is that a new password must be
chosen when migrating from one module to another and the storage
encryption key must be re-encrypted with the new password. For
example, if we wish to increase usage from 50 times to 500 times
per day, we use a 10-way replication factor, which implies that the
user must choose a new password and re-encrypt storage every 6
months during our target 5-year lifetime of the smartphone.

4.2 System integration
To build the limited-use connection in practical mobile devices,
we need to integrate the NEMS network with conventional CMOS.
Here we show that the CMOS-NEMS integration is feasible in the
manufacturing process and the CMOS-NEMS interface does not
compromise the security of the device storage.

Manufacturability. NEMS devices are CMOS-compatible: they
do not require exotic materials or fabrication flow. In the litera-
ture, there have been integrated CMOS-NEMS circuits for leakage-
control and power-gating [16, 30]. A possible integration solution,
for example, is to have NEMS and CMOS circuits in differet layers
of the chip with a sandwiched metal layer in between [14].

Security. We bury the secret key many layers below the surface
of the chip and only connect that secret key to the surface through
NEMS devices. Although there are CMOS-NEMS connections both
from the surface to the NEMS network and from the NEMS network
to the deeply buried secret key, the latter connections are difficult to
access and thus provide a level of physical security. Circumventing
the surface connections does not help the adversary access the secret.

4.3 Engineering space exploration
In this section, we talk about the engineering space exploration for
the limited-use connection. Without loss of generality, the discussion
will be focused on architectural options using N copies of parallel
structures with or without encoding. As discussed earlier, our goal is
to guarantee the system-level access bounds to protect the passcode
from real-world brute-force attacks. Here we list several parame-
ters in the engineering space of the limited-use connection: device
wearout characteristics, redundant encoding, and system-level access
bounds. Next, we will discuss these parameters and their trade-offs
in fabrication cost, area cost, encoding complexity, etc. The experi-
ments are based on numerical simulations with different engineering
options.

4.3.1 Device wearout characteristics. We first choose different
αs and β s to characterize various kinds of NEMS switches. Since
α approximates to the average lifetime of devices in the Weibull

model, we set α according to the lifetime of representative NEMS
switches as listed in [37], ranging from 1 cycle to 1000 cycles. In
the following discussion, we show most of our results with α from
10 cycles to 20 cycles. The redundant encoding technique enables
linear scaling with the increase of αs so that we can accommodate
loose wearout bounds with a linear increase of the number of NEMS
switches in the architecture. For the parameter β , we try various
values from 4 to 16 according to the Weibull modeling of various
kinds of devices in the literature. For example, as mentioned in
Section 2.2, MEMS devices in [55] have β s of 12.94, 7.2, 8.58 with
geometrical variations, material elasticity and resistance variations.
According to [59], typical β values for MEMS reliability fall in 0.5
to 5. We try to push β values down (eg. 4) with redundant encoding
to tolerate more process variations.

Then we study how many such devices the limited-use connection
requires to meet the fast degradation requirement. The results are
shown in Figure 4a without redundant encoding. With small αs, the
NEMS switches have tight wearout bounds so that small parallel
structures can meet the fast degradation requirement. With large αs,
the number of NEMS switches increases exponentially to compen-
sate with the loose wearout bounds (The y-axis in Figure 4a is in log
scale). Similarly, with large β s, the NEMS switches are relatively
consistent in the degradation so that small parallel structures are fea-
sible. With small β s, the number of devices increases dramatically
to control the variations.

Given the number of devices needed in the architecture, we es-
timate the area cost analytically assuming an H-tree layout of the
NEMS switches and wires. The contact area of each NEMS switch is
assumed to be 100nm2 and the distance between switches is assumed
to be 1nm [37]. The area cost of representative engineering options
are summarized in Table 1. Although loose wearout bounds and
process variations can be compensated by investing more NEMS
switches in the architecture to minimize the fabrication cost, the
correspondent area cost also increases significantly. For example,
when α is 18.69 and β is 10, the area cost is 0.52mm2, which could
be hard to afford especially when we need to deploy the security
hardware on mobile devices. In the next section, we demonstrate that
we can reduce the area cost using redundant encoding techniques.

4.3.2 Redundant encoding. As discussed earlier, with redundant
encoding, we enforce at least k working NEMS switches in each
parallel structure in order to successfully decrypt the key that is
required to validate the passcode. This encoding technique helps
tighten the wearout bounds for each parallel structure even with
NEMS switches that have relatively loose wearout bounds.

Figure 4b shows the effect of encoding the parallel structures
with different levels of redundancy. The total number of NEMS
switches needed decreases dramatically and scales linearly rather

Table 1: Area cost of the limited-use connection
(α , β) without encoding (mm2) with encoding

k = (10%∗n) (mm2)

(10.51, 16) 1.27e-4 3.2e-5
(10.21, 10) 2.03e-3 1.3e-4
(19.68, 16) 2.03e-3 1.3e-4
(18.69, 10) 5.2e-1 1.3e-4

Lemonade from Lemons ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

10 12 14 16 18 20
α

104

105

106

107

108

109

T
o
ta

l
n
u
m

b
e
r

o
f

N
E
M

S
 s

w
it

ch
e
s

(l
o
g
 s

ca
le

) A limited-use connection

β= 8

β= 10

β= 12

β= 14

β= 16

(a) Without redundant encoding

10 12 14 16 18 20
α

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

T
o
ta

l
n
u
m

b
e
r

o
f

N
E
M

S
 s

w
it

ch
e
s

1e6
Using redundant encoding in parallel structures

k= 10% *n, β=8

k= 10% *n, β=4

k= 20% *n, β=8

k= 20% *n, β=4

k= 30% *n, β=8

k= 30% *n, β=4

(b) With redundant encoding

10 12 14 16 18 20
α

0.4

0.6

0.8

1.0

1.2

1.4

T
o
ta

l
n
u
m

b
e
r

o
f

N
E
M

 s
w

it
ch

e
s

1e6
Using relaxed degradation criteria

p=1%

p=2%

p=4%

p=6%

p=8%

p=10%

(c) Relaxed degradation criteria

Baseline Beyond 1% Beyond 2%

Passcode popularity

0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
o
ta

l
n
u
m

b
e
r

o
f

N
E
M

S
 s

w
it

ch
e
s

1e6
Using stronger passcodes

β=4

β=8

(d) Using stronger passcodes
Figure 4: The total number of NEMS switches needed with different engineering options for the limited-use connection.

than exponentially with the increase of device wearout bounds. For
example, without encoding, when α is 14 and β is 8, the number
of NEMS switches needed in the architecture is about 4 billion.
However, if with redundant encoding and k = (10%∗n), the num-
ber of NEMS switches needed is only about 0.8 million with the
same α and β . So, the redundant encoding helps reduce 4 orders
of magnitude in the total number of NEMS switches. Moreover, it
also improves the system tolerance to higher device variations with
β = 4. With k = (30% ∗ n), however, the decrease in the number
of devices needed is negligible so that we can stop enforcing more
requisite components in the encoding and decoding.

We assume the storage for component keys should be proportional
to the size of the parallel structure and we accommodate that in the
area cost evaluation in Table 1. We do not need extra logical circuits
for the encoding/decoding because they can be done in CPU.

The switching energy is proportional to the size of each parallel
structure. Assume the energy cost for each operation in NEMS
switches is 10−20 Joule [37]. When α is 14, β is 8 and k = (10%∗
n), the total number of NEMS switches is 0.8 million and each
parallel structure has 141 NEMS switches. Then the energy cost for
each access is 1.41e-18 Joule. Since we use parallel structures, the
switching time for each access equals individual NEMS switch’s
switching time, which is around 10 ns [37].

4.3.3 System-level access bounds. If small variations of the system-
level access bounds are desired, we can tune the fast degradation
criteria to achieve the variation. The fast degradation criteria in pre-
vious experiments are defined as follows: Each parallel structure has
at least 99% probability for t accesses while at most 1% probability
for t+1 accesses. The reliability of the lower bound can be extended
to 99.99999% (for exponential decrease in the failure probability)
with 3x linear increase in NEMS switches using redundant encoding,
in which the minimum 91,250 accesses are guaranteed.

More interestingly, if the application has high tolerance to the
upper bound of accesses, then, in each copy, the degradation criteria
for t +1 accesses, p, can be relaxed from 1% to 10%, for instance.
We analyze the number of devices needed and the empirical access
bounds when using different degradation criteria, as shown in Fig-
ure 4c. When we increase p from 1% to 10%, the empirical access
upper bound increases from 91,326 to 92,028 accesses, while the
total number of NEMS switches needed is reduced by 40%.

Furthermore, if the passcode is sufficiently secure for many more
attempts, we can extend the upper bound to the minimum guesses
needed to crack the passcode. According to [62], only the most pop-
ular 1% passwords can be guessed with at least 100,000 attempts.

Similarly, 2% most popular passwords can be guessed with at least
200,000 attempts. We need at least 675,250 NEMS switches to ar-
chitect the limited-use connection with an upper bound of 91,326
accesses when β = 8 and k = (10% ∗ n), according to Figure 4b.
However, with upper bound targets of 100,000 and 200,000 ac-
cesses, we only need 38,325 and 29,200 NEMS switches, respec-
tively, as shown in Figure 4d.

5 A LIMITED-USE TARGETING SYSTEM
Similar to the security enhancement in smartphones, targeting sys-
tems can also benefit from the physically enforced limited-usage
of targeting commands. Political alliances change over time and
devices should be used only for the immediate mission.

Targeting systems are usually composed of three functional sub-
systems: the command and control system, the communication net-
work, and the launching station. The command and control system
makes targeting decisions according to the real-time data from radars
and these orders will be encrypted and transmitted securely to the
launching station through the encrypted communication link. Al-
though targeting systems have been designed with a high priority
for security, there are still many vulnerabilities. Cyber attacks are
reported that the hacker can execute commands on a targeting sys-
tem remotely by either gaining access to the control system or the
real-time communication network [7].

We propose to enhance the security of targeting systems with
limited-use security architectures. Since the launching station is
remotely operated through an encrypted communication link, we
restrict the maximum attempts to decrypt the targeting commands
at the launching station, which enforces an upper bound to the
execution of the targeting commands. By enforcing the upper bound,
we can enhance the security of the targeting system from two aspects:
1) it prevents excessive usage of the targeting system beyond the
original task, 2) it prevents brute-force attacks to crack the encryption
system.

As demonstrated in the limited-use connection use case, device
wearout can help physically enforce the access bounds. Similarly,
given an expected usage of the targeting commands in one task,
such as 100 times, we can exploit the device wearout to build an
architecture that automatically wears out after the 100th access to the
command decryption key. And we build the architecture inside the
launching system so that every access to the command decryption
key needs to traverse through the architecture. Compared with the
limited-use connection use case, the access bound here is relatively
small that a small number of parallel structures are feasible. And
the degradation criteria of the parallel structures should be strict

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada Z. Deng et al.

10 12 14 16 18 20
α

101

102

103

104

105

106

T
o
ta

l
n
u
m

b
e
r

o
f

N
E
M

S
 s

w
it

ch
e
s

(l
o
g
 s

ca
le

) A limited-use targeting system

β= 8

β= 10

β= 12

β= 14

β= 16

(a) Without redundant encoding

10 12 14 16 18 20
α

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

T
o
ta

l
n
u
m

b
e
r

o
f

N
E
M

S
 s

w
it

ch
e
s

1e3
Using redundant encoding in parallel structures

k= 10% *n, β=8

k= 10% *n, β=4

k= 20% *n, β=8

k= 20% *n, β=4

k= 30% *n, β=8

k= 30% *n, β=4

(b) With redundant encoding
Figure 5: The total number of NEMS switches needed with different
engineering options for the limited-use targeting system.

because we do not want a single unintentional targeting command
to be executed.

As a result, our design principles of using device wearout to build
a limited-use targeting system are: 1) the targeting system should
work reliably for the expected number of usage, 100 times, for in-
stance. 2) the targeting system should not work for the 101st time.
Since the design goals here are similar as in the last use case, we
skip the detailed discussion of design options. Figure 5 shows the
total number of NEMS switches needed with different engineering
options. Since the targeted access bound is relatively small, the num-
ber of NEMS switches needed in the architecture is also reduced by
several orders of magnitude compared with the limited-use connec-
tion use case. Without redundant encoding, the limited-use targeting
system needs at least 8,855 NEMS switches with α = 20 and β = 16.
The worst case in Figure 5a is 842,941 NEMS switches with α = 14
and β = 8. With redundant encoding, the total number of NEMS
switches can be reduced to 810 when k=(10%*n), α = 10 and β = 8,
as shown in Figure 5b. The curves are less smooth because of the
small usage target. Only 5 to 10 parallel structures are needed in
total and small variations in device wearout bounds can change the
total number of parallel structures.

6 USING DEVICE WEAROUT TO BUILD
ONE-TIME PADS

One-time pads [19] are important cryptographic algorithms used in
many important scenarios as they can provide perfect secrecy [32,
52]. However, to guarantee the perfect secrecy, important rules for
one-time pads include that there must be only two copies of the keys
(one for the sender and one for the receiver), one copy should be
securely transmitted from the sender to the receiver before message
transmission, and the sender and receiver must destroy each key
immediately after each message encryption/decryption [5].

Traditionally, secret keys were written in real paper pads. Paper,
however, severely limits the bandwidth of key distribution. One
approach would be to use read destructive memories, which can
share the keys and destroy them after use. They can not, however,
resist adversarial cloning. Attackers may clone the one-time pads
and make two copies, one copy to replace the receiver’s original
one and another copy for themselves to break the encryption in
future message transmission between the sender and receiver (the
archaically named “evil maid attack”). Another approach would be
to use Physically-Unclonable Devices (PUFs) [58, 64] to fabricate
an unclonable one-time pad. PUFs depend upon process variations

Random
Key

a

Random
Key
b

Random
Key

c

Random
Key
d

Random
Key

e

Random
Key

f

Random
Key
g

Random
Key
h

short string: 010

0

1

0

Figure 6: The decision-tree structure for randomness amplification. The
receiver follows the short string to get the random key. At each branch,
‘0’ means left and ‘1’ means right. For instance, the short string “010”
directs to random key c.

in each chip, however, making it difficult to fabricate two identical
chips so that a sender and receiver could share the pad. We need
to both defend against stealthy replications by making it difficult
for attackers to ever access the secret keys, yet offer reliable secret
sharing between the sender and receiver.

We propose to use wearout devices to provide hardware enforced
security for one-time pads. In Section 6.1, we use decision trees
to distribute large random keys as a form of randomness amplifica-
tion. In Section 6.2, we build hardware decision trees with NEMS
switches to physically enforce the one-time usage of the keys. In
Section 6.3, we exploit redundant encoding techniques to guarantee
that the receiver can reliably retrieve the key but adversaries can not.
The impacts of engineering options such as decision-tree heights,
device wearout characteristics are discussed in Section 6.4.

6.1 Secure transmission of large random keys
In one-time pads, each message employs a new key and the key
must be at least as long as the message. As a result, large keys
are required for long messages and these keys must be transmitted
securely before any message transmission. To relax the requirement
for secure transmission of the whole block of random keys, we
design decision trees that store many potential keys in their leaves
and each key is indexed by a short string about the path information,
as illustrated in Figure 6. We assume only the sender and receiver
share the right path so that adversaries can only do random path
trials to obtain the secret keys.

As a result, the secure transmission of large random keys is di-
vided into the secure transmission of two parts: a short path string
and a decision tree that contains many potential random keys. On
one hand, the secure transmission of the short path string is less
expensive compared with the whole block of random keys. There
are many choices for the transmission media and people can even
memorize it. If using a temporary channel for the short string, there
is less opportunity for adversaries to break it since the transmission
time could be very short. On the other hand, decision trees are im-
plemented in wearout devices on a chip, and the secure transmission
of them is guaranteed by our design with NEMS devices, which will
be explained in Section 6.2.

The chip that contains many decision trees (many random keys)
is our new set of “one-time pads” that should be delivered to the

Lemonade from Lemons ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

receiver beforehand for many instances of potential message trans-
mission. Even if the chip is obtained by adversaries, the adversaries
still have little chance obtaining the right random keys without the
right path information. Moreover, the decision tree will be destroyed
very quickly after one trial because of the underlying wearout de-
vices. We will explain the hardware implementation of decision trees
in detail in Section 6.2 and Section 6.3.

6.2 Hardware design of one-time decision trees
with NEMS switches

6.2.1 Design principles. To guarantee the security of one-time
pads in decision trees, we need to follow the rules that random
strings must be transmitted securely (without stealthy cloning) and
destroyed immediately after use. In general, the hardware design
of decision trees using NEMS switches is guided by the following
principles:

• At least one path should work so that the receiver is able to
use the key at least once.

• Not many paths should work, which will prevent adver-
saries from getting the key within limited trials.

• Each tree should be area efficient so that we can maximize
the density of one-time pads on a fixed-size chip.

We build the decision-tree circuit with NEMS switches as interme-
diate nodes of the tree. On one hand, to allow the receiver to use
the tree at least once, the path to the right random string should be
successful at least for the first time, which imposes a lower bound
on the path reliability. On the other hand, to effectively withstand ad-
versaries’ attacks, the paths should fail as quickly as possible so that
not many of the paths work successfully, which imposes an upper
bound on the path reliability. Similar to the first two use cases, we
can physically enforce the access bounds by carefully engineering
the decision-tree structures with NEMS switches.

6.2.2 Hardware design of decision trees. Figure 7 shows the
schematic of the decision-tree circuit. The decision-tree circuit uses
the short path string as control bits to open up the path to the right
random string and sends out the right random string serially. The
intermediate nodes in the decision tree are implemented with NEMS
switches that wear out very quickly, while the random keys in the
leaves are implemented in read destructive shift registers. Simply
relying on an array of read-destructive or one-time programmable
devices (eg. anti-fuse technologies), however, would be vulnerable
to “evil maid attacks”. The read-destruction could be compromised
if reading with a lower voltage. Attackers could also easily clone
the devices and bypass the destruction. Our architecture with NEMS
switches on the paths will resist cloning by making it difficult for
attackers to get access to the memory. And we distribute the random
keys into many small memory devices so that it will be hard for
attackers to inspect all of them.

As shown in Figure 7, one NEMS switch is used at each branch
of the decision tree. Only if all the intermediate nodes along the
right path survive after the first access can the receiver successfully
obtain the target random string. If each NEMS switch could only
be accessed once ideally, then accessing each intermediate node
should allow you to choose one path but destroy the other one at the
same time since the intermediate switch would fail next time. As a
result, only one access could be made to the ideal decision tree and

this decision tree meets all of our design goals. However, practical
NEMS switches are hard to provide deterministic wearout bounds
due to fabrication and process variations. As a result, we exploit the
probabilistic modeling of NEMS switches, discussed in Section 2,
to reason about the security of hardware decision trees.

6.2.3 Probabilistic reasoning. According to the reliability model
in Equation (3), the probability of each NEMS switch surviving the

first access is R(1) = e−(
1
α
)

β

. Assume the height of the decision
tree is H. Then the probability of successfully getting through the

right path is (R(1))H = e−(
1
α
)

β
H . If any of the NEMS switches on

the right path failed for the first access, then no one would ever get
to the right random key.

A successful decision-tree design should enable a successful first
access but prevent any subsequent accesses. The probability for a
successful second trial can be throttled by designing a high tree or
using NEMS switches with tight wearout bounds so as to guarantee
the security and one-time usage of the decision tree. However, under
this condition, the probability of a successful first access is also
restricted. We should guarantee that the receiver can succeed at least
once without sacrificing the security at the same time.

One solution to improve the one-time pads’ reliability is to pro-
vide multiple copies of the same decision tree for each transmission.
The receiver can get the key as far as the right path in one copy is suc-
cessful. However, the challenge of this solution is to avoid leaking
information to adversaries with multiple copies of the same random
keys. We solve this problem by exploiting Shamir’s secret sharing
mechanism and redundant encoding, as discussed in Section 6.3.

6.3 Redundant encoding for reliable and secure
key transmission

To prevent information leakage to adversaries with redundant copies,
we encode the random strings with error-correction codes and spread
them into different copies. Some copies may be erased because of
the device failures. The receiver can recover the right random string
with a small number of failed copies. The desired feature of the error
correction codes, however, is fast degradation once we get more
failures beyond our error tolerance target to withstand adversaries’
attacks.

Based on Shamir’s secret-sharing scheme, as described in Sec-
tion 4.1.4, each random string is encoded into n component keys
stored at the same position of n copies of the decision tree: S1, S2, ...,
Sn. Each random string S can be computed with k or more Si com-
ponents. As a result, to guarantee both the reliability and security
of random keys, we need to guarantee that the receiver has close to
one probability to get through k or more paths successfully, while
adversaries have close to zero probability to do the same. The main
difference between the receiver and adversaries is that we assume
adversaries have no knowledge about the right path information.

6.3.1 Probabilistic modeling of successful one-time pads. Given
the redundant encoding technique, we can calculate the receiver’s
success probability and adversaries’ success probability analytically.
The receiver’s success probability on one copy is:

S(1)recv = e−(
1
α
)

β
H (9)

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada Z. Deng et al.

Figure 7: Schematic graph of the implementation of a 3-layer decision tree using NEMS switches

The probability of getting at least k out of n copies successfully is:

S(k+)
recv =

i=n

∑
i=k

(
n
i

)(
S(1)recv

)i(
1−S(1)recv

)(n−i)
(10)

For adversaries, we first consider that they can get through x paths
successfully out of n copies. Then, we need to calculate the success
probability of k or more out of x being the correct path, with the
probability of each successful path being the correct path as follows
(since there are 2(H−1) paths in total):

P =
1

2(H−1)
(11)

The adversaries’ success probability for getting through one path in
one copy is:

S(1)adv = e−(
1
α
)

β
H (12)

The probability of getting through x paths in n copies is:

Prob(x) =
(

n
x

)(
S(1)adv

)x(
1−S(1)adv

)(n−x)
(13)

The probability that k or more out of x successful paths are the right
paths is:

Probx(k+) =
i=x

∑
i=k

(
x
i

)
Pi(1−P)(x−i) (14)

The probability of getting at least k out of n copies successfully for
adversaries is:

S(k+)
adv =

x=n

∑
x=k

(Prob(x)Probx(k+)) (15)

, in which k ≤ x ≤ n.
The engineering goal for one-time pads in decision trees is to

make sure that S(k+)
recv is close to one and S(k+)

adv is close to zero.
Parameters in the above equations such as H, α , β , n, k will be
discussed in Section 6.4 for trade-offs among fabrication cost, area
cost, encoding complexity, etc.

6.4 Engineering space exploration
In this section, we explore the engineering space that can 1) guar-
antee the success of one-time pads (in both security and reliability)
and 2) reduce the fabrication cost and area cost.

We first use a specific type of NEMS switch with an expected
lifetime of 10 cycles: α = 10 and β = 1. We can deal with high
process variations (small β s) because only the reliability of the first
access can affect receiver’s and adversaries’ success probability. For
each key transmission, we use 128 copies of the same decision tree
(n = 128).

6.4.1 Redundancy levels. Redundancy levels and encoding com-
plexity will be reflected in the values of k. The receiver’s and adver-
saries’ success probability with different ks and tree heights Hs is
presented in Figure 8. The intersection of the red area in Figure 8a
and the blue area in Figure 8b is the success space for one-time
pads. With high redundancy, the secret is easy to recover. In contrast,
with low redundancy, the access to the secret becomes more difficult
since only receiving enough components can help recover the secret.
As a result, low redundancy leads to high security. As shown in
Figure 8a and Figure 8b, both receiver’s and adversaries’ success
space shrink quickly with the increase of k (decrease of redundancy)
but adversaries fail faster. Moreover, when both n and k increase,
the complexity of encoding and decoding random strings increases
because the latency for constructing and solving the polynomial
systems increases.

6.4.2 Tree heights. Higher trees can also enhance the security of
one-time pads because 1) the path to the random keys gets longer so
that the probability of getting through all the nodes along the path
for both the receiver and adversaries becomes smaller, and 2) the
number of paths increases exponentially so that it is even harder
for adversaries to get on the right path. In Figure 8a, the receiver’s
success area shrinks when the tree height increases. However, in
Figure 8b, the tree height can effectively block adversaries. When

Lemonade from Lemons ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

0 20 40 60 80 100 120
K

0

20

40

60

80

100

120

H
e
ig

h
t

Receiver's success probability
α=10, β=1, N=128

0.00

0.15

0.30

0.45

0.60

0.75

0.90

(a) receiver

0 20 40 60 80 100 120
K

0

20

40

60

80

100

120
H

e
ig

h
t

Adversaries's success probability
 α=10, β=1, N=128

0.00

0.15

0.30

0.45

0.60

0.75

0.90

(b) adversaries
Figure 8: Success probability with different tree heights and ks (redun-
dancy levels). The intersection of the red area in the left figure and the
blue area in the right figure is one-time pads’ success space for both
reliability and security.

0 20 40 60 80
α

0

20

40

60

80

100

120

H
e
ig

h
t

Receiver's success probability
β=1, K=8, N=128

0.00

0.15

0.30

0.45

0.60

0.75

0.90

(a) receiver

0 20 40 60 80
α

0

20

40

60

80

100

120

H
e
ig

h
t

Adversaries's success probability
β=1, K=8, N=128

0.00

0.15

0.30

0.45

0.60

0.75

0.90

(b) adversaries
Figure 9: Success probability with different wearout bounds (MTTFs)
and tree heights.

the tree height is 8 or more, the adversaries’ success probability
reduces to zero even if the redundancy level is very high (k is close
to 0).

In summary, redundancy provides reliability for the receiver and
the tuning of redundancy levels can trade encoding/decoding per-
formance for security. And higher trees can be exploited to further
improve the security of one-time pads, while with higher area and
performance cost.

In Figure 8, we used a specific type of NEMS switch in which
the mean time to failure is about 10 cycles. This can achieve a large
success space for one-time pads. However, such NEMS switches
may be expensive to fabricate to enforce the wearout fast and under
control. Figure 9 shows the impacts of different device wearout
bounds defined by the mean time to failure or α values. With higher
αs, both the receiver and adversaries have a higher probability of
getting the right key. To ensure security, we need higher trees or
less redundancy to compensate for the loose wearout bounds of
devices. We can see the trade-off between tree heights and wearout
bounds when H ≤ 7: higher trees compensate for looser wearout
bounds. When H ≥ 8, the tree height can effectively withstand any
adversaries’ attacks. Lower device variations (larger β s) lead to
smaller wearout windows. When the target access bound is only one
cycle, larger β s postpone the wearout so they do not help ensure
security, which also indicates high tolerance to process variations
while offering high reliability for the sender and receiver.

6.5 Evaluation
Given the design of hardware one-time pads in decision trees, we
want to evaluate how many times a single 1mm2 chip can be used
for message transmissions between the sender and receiver. We also
want to evaluate the latency and energy cost for retrieving a key each
time.

2 3 4 5 6 7 8 9 10 11

Height

0

1

2

3

4

5

6

N
u
m

b
e
r

o
f

d
e
ci

si
o
n
 t

re
e
s

in
 1
m
m

2 1e6

5e+06

2e+06

6e+05

2e+05
1e+05

4e+04 2e+04 9e+03 4e+03 2e+03

Density estimate of one-time pads

Figure 10: Density estimate

6.5.1 Density estimate. We assume an H-tree layout for the deci-
sion tree circuit. The area cost of a complete binary tree in H-layout
is at the order of the number of leaves in the tree if nodes are sepa-
rated with unit distance [12]. Given that the height of each decision
tree is H, there are 2(H−1) leaves. We assume 100nm2 for the di-
mension of each NEMS switch [8, 36, 37]. Then the area cost for
the decision tree is about 100∗2(H−1)nm2. The area cost for shift
registers is linear to the size of random strings. The size of each
random string is assumed to be proportional to the tree height, that
is, around 1000H bits. Then the area cost for all the shift registers is
2(H−1) ∗1000H ∗50nm2, assuming a 50nm2 cell in the registers.

The number of decision trees we can accommodate in the chip is
calculated, as shown in Figure 10. If H = 4 and N = 128, then we
can transmit around 4,687 one-time pads in this chip.

6.5.2 Latency and energy cost. The latency to retrieve a random
key is proportional to the path length and number of decision-tree
copies: lat =αHN, with α being the delay of a single NEMS switch,
at the order of 10 ns [37]. If N = 128 and H = 4 as in our previous ex-
ample, the latency to get to the random strings is around 0.00512ms
in the worst case. The latency for reading the random string out
from the shift register is proportional to the length of the random
string. We assume that the propagation delay per bit is around 20ns,
such as in MM74HC165 parallel-in/serial-out shift registers. Then
the delay of reading the whole random string out is about 0.08ms
(20ns∗1000H). So the total delay for each random key retrieval is
around 0.08512ms.

Similarly, the energy cost on the path to the random string is
5.12e-18 (NH ∗10−20) Joule in the worst case. The energy cost in
reading the random strings out is negligible since only one read from
a shift register is needed after successfully getting through a path.

7 LIMITATIONS
This is an initial work to exploit a contrarian view of wearout to build
limited-use security architectures. However, more experimentation
and discussion on NEMS failure models and security mechanisms
are needed in the future.

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada Z. Deng et al.

The primary limitation of the current work is that, even with tech-
niques to decrease system-level sensitivity to device variation, device
parameters must still fall within a specific range to make system use
targets practical. Note also that we reduce sensitivity to the scale
parameter (that represents devices’ mean time to failure) but not the
shape parameter (which represents devices’ variations in lifetime
degradation). Furthermore, although the Weibull model is highly
parameterized, we need experimental data to validate the range of
parameters that are realistic of this or other alternative models. Fi-
nally, we might compromise the device’s availability for legitimate
users in order to guarantee strong confidentiality and integrity. An
attacker could purposely degrade the NEMS network through many
password guesses to consume the legitimate usage bound, which will
hurt the availability for legitimate users. The key issue, however, is
to guarantee confidentiality and integrity of the data after the attacker
got access to the device. In our design, intentional consumption of
the legitimate usage bound could only degrade the device faster, but
not leak any information of the confidential data.

8 RELATED WORK
Hardware security has attracted a lot of interests recently. As mobile
and embedded devices become ubiquitous, attackers could easily
get access to the physical devices. In order to achieve confidential
information in the devices, they could exploit any hardware mea-
sures to crack the devices, such as brute-force, reverse engineering,
side channels, etc [47]. Researchers have proposed a variety of coun-
termeasures to defend against such kinds of physical attacks.These
countermeasures can be generally classified into two taxonomies:
software assisted approaches and pure hardware approaches:

Software assisted approaches. Many existing hardware security
solutions involve the cooperation of software and hardware [4, 42].
For example, modern smartphones have tamper-resistant hardware
modules (eg. SoC’s secure enclave) to protect the processing and
the storage of the device’s encryption key and user’s confidential
information, yet some important security policies that restrict the us-
age of the keys are implemented in software. The software interface,
however, could expose security vulnerabilities and compromise the
hardware security. Software may have bugs that lead to violations of
the policy. The device could be reprogrammed, either by adversaries
or under duress, through these software APIs to implement a differ-
ent policy. Hence, pure hardware solutions are desired to physically
secure the confidential data.

Hardware approaches. Hardware approaches exploit physical
device characteristics to protect the data. The specific hardware mea-
sures have been ad-hoc and we summarize them into the following
three taxonomies:

(1) Physical disorder based security: Physically unclonable func-
tions (PUFs) and random number generators (RNGs) are most
popular hardware security primitives in this category [48]. They
are based on the inherent randomness in each device due to
process variations to generate a unique key for each device for
device authentication, IP protection, random number generation,
etc. A variety of hardware technologies have been explored to
provide the physical disorder, such as SRAM [25], DRAM [61],
memristors [33, 63], nanotechnologies [46], etc.

(2) Physical degradation based security: This taxonomy refers to
hardware measures that enforce physical usage bounds through
purposely degradation of the hardware. [17] created the first
self-enforceable hardware for software and content usage me-
tering. They employed the aging effects in transistors due to
negative bias temperature instability to measure the time a par-
ticular licensed software is used. Similarly, [45] used the SRAM
decay phenomenon to measure time for batteryless embedded
devices in order to throttle response rates to adversarial accesses.
Recently, [66] proposed a memristor-based neuromorphic com-
puting system that can resist adversarial learning of the model
and data by degrading the learning accuracy nonlinearly after
more inputs are applied to the learning algorithm. Our pro-
posal also stems from this taxonomy but we tailor the devices’
degradation characteristics to meet the system level usage re-
quirements through a series of techniques. The methodology
can be generally applied to many security architectures where a
physically enforced usage window is desired.

(3) Physical destruction based security: Some other hardware ap-
proaches can restrict data accesses through self-destructing cir-
cuits. However, most current self-destructing devices can only
destruct the data, but not the devices [43, 65]. By reprogram-
ming or cloning the devices, all the internal data could be cloned
into multiple copies so that the data cannot be secured. Other
self-destructing devices need external operations to trigger the
destruction [6, 9, 27]. For example, DARPA displayed a new
chip built on strained glass substrates that can shatter within 10
seconds when remotely triggered [6]. Nevertheless, our system
wears out automatically without a need for remote control.

Meanwhile, more research efforts are needed in the future to study
the general design principles, the evaluation and verification method-
ologies of security architectures that can offer hardware-enforced
security.

9 CONCLUSION
In this paper, we propose methodologies of using wearout devices
to build security architectures. We explored a probabilistic wearout
model with Weibull distribution to characterize the behaviors of
NEMS wearout. Based on these characteristics, we design architec-
tures that can physically limit attacks while accommodating legiti-
mate usage. Three use cases are examined: a limited-use connection,
a limited-use targeting system and one-time pads. We first present
a family of architectural techniques to meet minimum and maxi-
mum system-level usage bounds and characterize the design space
in terms of device variability (which affects fabrication cost) and
device count (which affects area and power). Then we use redun-
dant encoding techniques to improve the security architectures from
exponential scaling to linear scaling with the increase of device
wearout bounds in the limited-use connection and limited-use target-
ing system use cases. In the use case of one-time pads, the redundant
encoding (Shamir’s secret sharing scheme) can effectively throttle
the possibility of leaking secret information to adversaries and thus
guarantee both reliability and security of one-time pads.

Overall, we envision new opportunities for physically limiting
vulnerability to attacks through careful engineering of intentional
device wearout.

Lemonade from Lemons ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

REFERENCES
[1] Apple firmware updates. https://blog.trailofbits.com/2016/02/17/

apple-can-comply-with-the-fbi-court-order/.
[2] Apple iOS Hardware Assisted Screenlock Bruteforce. http://blog.mdsec.co.uk/

2015/03/bruteforcing-ios-screenlock.html.
[3] IEEE Standard Specifications For Public Key Cryptography. http://grouper.ieee.

org/groups/1363/.
[4] iOS Security Guide. https://www.apple.com/business/docs/iOS_Security_Guide.

pdf.
[5] One-time pads (OTP). http://users.telenet.be/d.rijmenants/en/onetimepad.htm.
[6] Self-destructing chips. http://spectrum.ieee.org/tech-talk/computing/hardware/

us-militarys-chip-self-destructs-on-command.
[7] Targeting System Attacks. http://europe.newsweek.com/

german-missiles-hacked-by-foreign-source-329980?rx=us.
[8] Ali Arab and Qianmei Feng. 2014. Reliability research on micro-and nano-

electromechanical systems: a review. The International Journal of Advanced
Manufacturing Technology 74, 9-12 (2014), 1679–1690.

[9] N Banerjee, Y Xie, Md M Rahman, H Kim, and CH Mastrangelo. 2014. From
chips to dust: The MEMS shatter secure chip. In Micro Electro Mechanical
Systems (MEMS), 2014 IEEE 27th International Conference on. IEEE, 1123–
1126.

[10] AH Barber, I Kaplan-Ashiri, SR Cohen, R Tenne, and HD Wagner. 2005. Sto-
chastic strength of nanotubes: an appraisal of available data. Composites Science
and Technology 65, 15 (2005), 2380–2384.

[11] Maria Berdova, Oili ME Ylivaara, Ville Rontu, Pekka T Törmä, Riikka L Puu-
runen, and Sami Franssila. 2015. Fracture properties of atomic layer deposited
aluminum oxide free-standing membranes. Journal of Vacuum Science & Tech-
nology A 33, 1 (2015), 01A106.

[12] Richard P. Brent and HT Kung. 1980. On the area of binary tree layouts. Inform.
Process. Lett. 11, 1 (1980), 46–48.

[13] Juan-Antonio Carballo, Wei-Ting Jonas Chan, Paolo A Gargini, Andrew Kahng,
and Siddhartha Nath. 2014. ITRS 2.0: Toward a re-framing of the Semicon-
ductor Technology Roadmap. In Computer Design (ICCD), 2014 32nd IEEE
International Conference on. IEEE, 139–146.

[14] Rajat Subhra Chakraborty, Seetharam Narasimhan, and Swarup Bhunia. 2007.
Hybridization of CMOS with CNT-based nano-electromechanical switch for low
leakage and robust circuit design. IEEE Transactions on Circuits and Systems I:
Regular Papers 54, 11 (2007), 2480–2488.

[15] Soogine Chong, Byoungil Lee, Subhasish Mitra, Roger T Howe, and H-S Philip
Wong. 2012. Integration of nanoelectromechanical relays with silicon nMOS.
IEEE Transactions on Electron Devices 59, 1 (2012), 255–258.

[16] David A Czaplewski, Gary A Patrizi, Garth M Kraus, Joel R Wendt, Christo-
pher D Nordquist, Steven L Wolfley, Michael S Baker, and Maarten P De Boer.
2009. A nanomechanical switch for integration with CMOS logic. Journal of
Micromechanics and Microengineering 19, 8 (2009), 085003.

[17] Foad Dabiri and Miodrag Potkonjak. 2009. Hardware aging-based software
metering. In Design, Automation & Test in Europe Conference & Exhibition, 2009.
DATE’09. IEEE, 460–465.

[18] Raden Dewanto, Tao Chen, Rebecca Cheung, Zhongxu Hu, Barry Gallacher,
and John Hedley. 2012. Reliability prediction of 3C-SiC cantilever beams using
dynamic Raman spectroscopy. In Nano/Micro Engineered and Molecular Systems
(NEMS), 2012 7th IEEE International Conference on. IEEE, 270–273.

[19] Whitfield Diffie and Martin E Hellman. 1979. Privacy and authentication: An
introduction to cryptography. Proc. IEEE 67, 3 (1979), 397–427.

[20] Whitfield Diffie, Paul C Van Oorschot, and Michael J Wiener. 1992. Authenti-
cation and authenticated key exchanges. Designs, Codes and cryptography 2, 2
(1992), 107–125.

[21] Ilya Dumer, Daniele Micciancio, and Madhu Sudan. 2003. Hardness of ap-
proximating the minimum distance of a linear code. Information Theory, IEEE
Transactions on 49, 1 (2003), 22–37.

[22] HD Espinosa, B Peng, N Moldovan, TA Friedmann, X Xiao, DC Mancini, O
Auciello, J Carlisle, CA Zorman, and M Merhegany. 2006. Elasticity, strength,
and toughness of single crystal silicon carbide, ultrananocrystalline diamond, and
hydrogen-free tetrahedral amorphous carbon. Applied physics letters 89, 7 (2006),
073111.

[23] XL Feng, MH Matheny, Christian A Zorman, Mehran Mehregany, and ML Roukes.
2010. Low voltage nanoelectromechanical switches based on silicon carbide
nanowires. Nano letters 10, 8 (2010), 2891–2896.

[24] Daniel Grogg, Christopher L Ayala, Ute Drechsler, Abu Sebastian, Wabe W
Koelmans, Simon J Bleiker, Montserrat Fernandez-Bolanos, Christoph Hagleitner,
Michel Despont, and Urs T Duerig. 2014. Amorphous carbon active contact layer
for reliable nanoelectromechanical switches. In 2014 IEEE 27th International
Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 143–146.

[25] Jorge Guajardo, Sandeep S Kumar, Geert-Jan Schrijen, and Pim Tuyls. 2007.
FPGA intrinsic PUFs and their use for IP protection. In International workshop
on Cryptographic Hardware and Embedded Systems. Springer, 63–80.

[26] Christoph G Günther. 1989. An identity-based key-exchange protocol. In Ad-
vances in Cryptology-Eurocrypt. Springer, 29–37.

[27] Jin-Woo Han, Myeong-Lok Seol, Yang-Kyu Choi, and M Meyyappan. 2016. Self-
Destructible Fin Flip-Flop Actuated Channel Transistor. IEEE Electron Device
Letters 37, 2 (2016), 130–133.

[28] Tina He, Rui Yang, Srihari Rajgopal, Mary Anne Tupta, Swarup Bhunia, Mehran
Mehregany, and Philip X-L Feng. 2013. Robust silicon carbide (SiC) nano-
electromechanical switches with long cycles in ambient and high temperature
conditions. In Micro Electro Mechanical Systems (MEMS), 2013 IEEE 26th
International Conference on. IEEE, 516–519.

[29] Tina He, Fengchao Zhang, Swarup Bhunia, and Philip X-L Feng. 2015. Silicon
Carbide (SiC) Nanoelectromechanical Antifuse for Ultralow-Power One-Time-
Programmable (OTP) FPGA Interconnects. IEEE Journal of the Electron Devices
Society 3, 4 (2015), 323–335.

[30] Michael B Henry and Leyla Nazhandali. 2012. From transistors to NEMS: Highly
efficient power-gating of CMOS circuits. ACM Journal on Emerging Technologies
in Computing Systems (JETC) 8, 1 (2012), 2.

[31] Ari Juels and Madhu Sudan. 2006. A fuzzy vault scheme. Designs, Codes and
Cryptography 38, 2 (2006), 237–257.

[32] David Kahn. 1974. The codebreakers. Weidenfeld and Nicolson.
[33] Patrick Koeberl, Ünal Kocabaş, and Ahmad-Reza Sadeghi. 2013. Memristor

PUFs: a new generation of memory-based physically unclonable functions. In
Proceedings of the Conference on Design, Automation and Test in Europe. EDA
Consortium, 428–431.

[34] Jeong Oen Lee, Yong-Ha Song, Min-Wu Kim, Min-Ho Kang, Jae-Sub Oh, Hyun-
Ho Yang, and Jun-Bo Yoon. 2013. A sub-1-volt nanoelectromechanical switching
device. Nature nanotechnology 8, 1 (2013), 36–40.

[35] Te-Hao Lee, Swarup Bhunia, and Mehran Mehregany. 2010. Electromechanical
computing at 500 C with silicon carbide. Science 329, 5997 (2010), 1316–1318.

[36] Owen Loh, Xiaoding Wei, Changhong Ke, John Sullivan, and Horacio D Espinosa.
2011. Robust Carbon-Nanotube-Based Nano-electromechanical Devices: Under-
standing and Eliminating Prevalent Failure Modes Using Alternative Electrode
Materials. small 7, 1 (2011), 79–86.

[37] Owen Y Loh and Horacio D Espinosa. 2012. Nanoelectromechanical contact
switches. Nature nanotechnology 7, 5 (2012), 283–295.

[38] John I McCool. 2012. Using the Weibull distribution: reliability, modeling and
inference. Vol. 950. John Wiley & Sons.

[39] Robert J. McEliece and Dilip V. Sarwate. 1981. On sharing secrets and Reed-
Solomon codes. Commun. ACM 24, 9 (1981), 583–584.

[40] Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone. 1996. Handbook
of applied cryptography. CRC press.

[41] Justin Meza, Qiang Wu, Sanjev Kumar, and Onur Mutlu. 2015. A Large-Scale
Study of Flash Memory Failures in the Field. In Proceedings of the 2015 ACM SIG-
METRICS International Conference on Measurement and Modeling of Computer
Systems. ACM, 177–190.

[42] Patrick Mutchler, Adam Doupé, John Mitchell, Chris Kruegel, and Giovanni
Vigna. 2015. A large-scale study of mobile web app security. Mobile Security
Techologies (2015).

[43] KP Ng, MC Lee, KC Kwong, and Mansun Chan. 2009. Diode based gate oxide
anti-fuse one time programmable memory array in standard CMOS process. In
Electron Devices and Solid-State Circuits, 2009. EDSSC 2009. IEEE International
Conference of. IEEE, 457–460.

[44] Moinuddin K Qureshi, John Karidis, Michele Franceschini, Vijayalakshmi Srini-
vasan, Luis Lastras, and Bulent Abali. 2009. Enhancing lifetime and security of
PCM-based main memory with start-gap wear leveling. In Proceedings of the
42nd Annual IEEE/ACM International Symposium on Microarchitecture. ACM,
14–23.

[45] Amir Rahmati, Mastooreh Salajegheh, Dan Holcomb, Jacob Sorber, Wayne P
Burleson, and Kevin Fu. 2012. TARDIS: Time and remanence decay in SRAM to
implement secure protocols on embedded devices without clocks. In Proceedings
of the 21st USENIX conference on Security symposium. USENIX Association,
36–36.

[46] Jeyavijayan Rajendran, Ramesh Karri, James B Wendt, Miodrag Potkonjak,
Nathan McDonald, Garrett S Rose, and Bryant Wysocki. 2015. Nano meets
security: Exploring nanoelectronic devices for security applications. Proc. IEEE
103, 5 (2015), 829–849.

[47] Masoud Rostami, Farinaz Koushanfar, and Ramesh Karri. 2014. A primer on
hardware security: Models, methods, and metrics. Proc. IEEE 102, 8 (2014),
1283–1295.

[48] Masoud Rostami, James B Wendt, Miodrag Potkonjak, and Farinaz Koushanfar.
2014. Quo vadis, PUF?: trends and challenges of emerging physical-disorder
based security. In Design, Automation and Test in Europe Conference and Exhibi-
tion (DATE), 2014. IEEE, 1–6.

[49] Hebatallah Saadeldeen, Diana Franklin, Guoping Long, Charlotte Hill, Aisha
Browne, Dmitri Strukov, Timothy Sherwood, and Frederic T Chong. 2013. Mem-
ristors for neural branch prediction: a case study in strict latency and write en-
durance challenges. In Proceedings of the ACM International Conference on

https://blog.trailofbits.com/2016/02/17/apple-can-comply-with-the-fbi-court-order/
https://blog.trailofbits.com/2016/02/17/apple-can-comply-with-the-fbi-court-order/
http://blog.mdsec.co.uk/2015/03/bruteforcing-ios-screenlock.html
http://blog.mdsec.co.uk/2015/03/bruteforcing-ios-screenlock.html
http://grouper.ieee.org/groups/1363/
http://grouper.ieee.org/groups/1363/
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
http://users.telenet.be/d.rijmenants/en/onetimepad.htm
http://spectrum.ieee.org/tech-talk/computing/hardware/us-militarys-chip-self-destructs-on-command
http://spectrum.ieee.org/tech-talk/computing/hardware/us-militarys-chip-self-destructs-on-command
http://europe.newsweek.com/german-missiles-hacked-by-foreign-source-329980?rx=us
http://europe.newsweek.com/german-missiles-hacked-by-foreign-source-329980?rx=us

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada Z. Deng et al.

Computing Frontiers. ACM, 26.
[50] Udo Schwalke, Martin Pölzl, Thomas Sekinger, and Martin Kerber. 2001. Ultra-

thick gate oxides: charge generation and its impact on reliability. Microelectronics
reliability 41, 7 (2001), 1007–1010.

[51] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612–613.
[52] Adi Shamir. 1983. On the generation of cryptographically strong pseudorandom

sequences. ACM Transactions on Computer Systems (TOCS) 1, 1 (1983), 38–44.
[53] Zhiwen Shi, Hongliang Lu, Lianchang Zhang, Rong Yang, Yi Wang, Donghua

Liu, Haiming Guo, Dongxia Shi, Hongjun Gao, Enge Wang, and others. 2012.
Studies of graphene-based nanoelectromechanical switches. Nano Research 5, 2
(2012), 82–87.

[54] Sergei Skorobogatov. 2016. The bumpy road towards iPhone 5c NAND mirroring.
arXiv preprint arXiv:1609.04327 (2016).

[55] Trevor S Slack, Farshid Sadeghi, and Dimitrios Peroulis. 2009. A phenomenolog-
ical discrete brittle damage-mechanics model for fatigue of MEMS devices with
application to LIGA Ni. Journal of Microelectromechanical Systems 18, 1 (2009),
119–128.

[56] Miloš Stanisavljević, Alexandre Schmid, and Yusuf Leblebici. 2010. Reliability
of Nanoscale Circuits and Systems: Methodologies and Circuit Architectures.
Springer Science & Business Media.

[57] Frank Streller, Graham E Wabiszewski, and Robert W Carpick. 2015. Next-
Generation Nanoelectromechanical Switch Contact Materials: A Low-Power
Mechanical Alternative to Fully Electronic Field-Effect Transistors. IEEE Nan-
otechnology Magazine 9, 1 (2015), 18–24.

[58] G Edward Suh and Srinivas Devadas. 2007. Physical unclonable functions for
device authentication and secret key generation. In Proceedings of the 44th annual
Design Automation Conference. ACM, 9–14.

[59] Danelle M Tanner, Norman F Smith, LLOYD W IRWIN, William P Eaton,
KAREN SUE HELGESEN, J JOSEPH CLEMENT, WILLIAM M MILLER,
SAMUEL L MILLER, MICHAEL T DUGGER, JEREMY A WALRAVEN, and
others. 2000. MEMS reliability: infrastructure, test structures, experiments, and
failure modes. Technical Report. Sandia National Labs., Albuquerque, NM (US);
Sandia National Labs., Livermore, CA (US).

[60] Mohammad Tariq Jan, Nor Hisham Bin Hamid, Mohd Haris Md Khir, Khalid
Ashraf, and Mohammad Shoaib. 2014. Reliability and Fatigue Analysis in
Cantilever-Based MEMS Devices Operating in Harsh Environments. Journal of
Quality and Reliability Engineering 2014 (2014).

[61] Fatemeh Tehranipoor, Nima Karimian, Wei Yan, and John A Chandy. 2016.
DRAM-Based Intrinsic Physically Unclonable Functions for System-Level Se-
curity and Authentication. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems (2016).

[62] Blase Ur, Sean M Segreti, Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor,
Saranga Komanduri, Darya Kurilova, Michelle L Mazurek, William Melicher,
and Richard Shay. 2015. Measuring real-world accuracies and biases in modeling
password guessability. In 24th USENIX Security Symposium (USENIX Security
15). 463–481.

[63] Yandan Wang, Wei Wen, Hai Li, and Miao Hu. 2015. A novel true random number
generator design leveraging emerging memristor technology. In Proceedings of
the 25th edition on Great Lakes Symposium on VLSI. ACM, 271–276.

[64] Yinglei Wang, Wing-kei Yu, Sarah Q Xu, Edwin Kan, and G Edward Suh. 2013.
Hiding information in flash memory. In Security and Privacy (SP), 2013 IEEE
Symposium on. IEEE, 271–285.

[65] Jinbo Xiong, Zhiqiang Yao, Jianfeng Ma, Ximeng Liu, and Qi Li. 2013. A se-
cure document self-destruction scheme: an ABE approach. In High Performance
Computing and Communications & 2013 IEEE International Conference on Em-
bedded and Ubiquitous Computing (HPCC_EUC), 2013 IEEE 10th International
Conference on. IEEE, 59–64.

[66] Chaofei Yang, Beiye Liu, Hai Li, Yiran Chen, Wujie Wen, Mark Barnell, Qing
Wu, and Jeyavijayan Rajendran. 2016. Security of neuromorphic computing:
thwarting learning attacks using memristor’s obsolescence effect. In Proceedings
of the 35th International Conference on Computer-Aided Design. ACM, 97.

[67] Doe Hyun Yoon, Naveen Muralimanohar, Jichuan Chang, Parthasarathy Ran-
ganathan, Norman P Jouppi, and Mattan Erez. 2011. FREE-p: Protecting non-
volatile memory against both hard and soft errors. In High Performance Computer
Architecture (HPCA), 2011 IEEE 17th International Symposium on. IEEE, 466–
477.

[68] Lunkai Zhang, Brian Neely, Diana Franklin, Dmitri Strukov, Yuan Xie, and
Frederic T Chong. 2016. Mellow writes: Extending lifetime in resistive memo-
ries through selective slow write backs. In Computer Architecture (ISCA), 2016
ACM/IEEE 43rd Annual International Symposium on. IEEE, 519–531.

	Abstract
	1 Introduction
	2 Device wearout model
	2.1 NEMS contact switches
	2.2 Probabilistic wearout model

	3 Threat model
	4 A Limited-use connection
	4.1 Using wearout to build a limited-use connection
	4.2 System integration
	4.3 Engineering space exploration

	5 A limited-use targeting system
	6 Using device wearout to build one-time pads
	6.1 Secure transmission of large random keys
	6.2 Hardware design of one-time decision trees with NEMS switches
	6.3 Redundant encoding for reliable and secure key transmission
	6.4 Engineering space exploration
	6.5 Evaluation

	7 Limitations
	8 Related work
	9 Conclusion
	References

